精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任一点.
(Ⅰ)求证:AC⊥DE;
(Ⅱ)当E是PB的中点时,求证:PD∥平面EAC;
(Ⅲ)若△AEC面积的最小值是6,求PB与平面ABCD所成的角的大小.

解:(Ⅰ)∵PD⊥平面ABCD,AC?平面ABCD,∴PD⊥AC.
在菱形ABCD中,BD⊥AC,又∵PD∩BD=D,∴AC⊥平面PDB.
又∵DE?平面PDB,∴AC⊥DE.
(Ⅱ)当E为PB中点时,∵O为BD中点,∴EO∥PD.
∵EO?平面AEC,PD?平面AEC,∴PD∥平面AEC.
(Ⅲ)∵PD⊥平面ABCD,∴∠PBD就是PB与平面ABCD所成的角.
由(Ⅰ)的证明可知,AC⊥平面PDB,∴AC⊥EO.
∵AC=6,∴,因其最小值为6,∴EO的最小值为2,
此时EO⊥PB,,∴
∴PB与平面ABCD成30°的角.
分析:(Ⅰ) 证明PD⊥AC,BD⊥AC,得到AC⊥平面PDB,由DE?平面PDB,可得AC⊥DE.
(Ⅱ) 利用EO是三角形BPD的中位线得到EO∥PD,从而证得 PD∥平面AEC.
(Ⅲ)∴∠PBD就是PB与平面ABCD所成的角,当EO最小时,EO⊥PB,据△AEC面积的最小值是6,求得EO的最小值为2,由,求出锐角∠PBD 的大小.
点评:本题考查线线平行、线面垂直的判定,求线面角的大小,判断EO⊥PB时,EO 最小值为2,是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案