【题目】已知椭圆:(),点是的左顶点,点为上一点,离心率.
(1)求椭圆的方程;
(2)设过点的直线与的另一个交点为(异于点),是否存在直线,使得以为直径的圆经过点,若存在,求出直线的方程;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】本小题满分13分)
工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.
(1)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(2)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望);
(3)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查“双11”消费活动情况,某校统计小组分别走访了、两个小区各20户家庭,他们当日的消费额按,,,,,,分组,分别用频率分布直方图与茎叶图统计如下(单位:元):
(1)分别计算两个小区这20户家庭当日消费额在的频率,并补全频率分布直方图;
(2)分别从两个小区随机选取1户家庭,求这两户家庭当日消费额在的户数为1时的概率(频率当作概率使用);
(3)运用所学统计知识分析比较两个小区的当日网购消费水平.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,部分对应值如下表:
0 | 4 | 5 | ||
1 | 2 | 2 | 1 |
的导函数的图象如图所示,关于的命题正确的是( )
A.函数是周期函数
B.函数在上是减函数
C.函数的零点个数可能为0,1,2,3,4
D.当时,函数有 4个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平面为,平面为,点是线段上一动点,.给出下列四个结论:
①为的重心;
②;
③当时,平面;
④当三棱锥的体积最大时,三棱锥外接球的表面积为.
其中,所有正确结论的序号是________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(,t为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直角坐标系下直线与曲线的普通方程;
(2)设直线与曲线交于点、(二者可重合),交轴于,若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为,是椭圆上关于原点对称的两个动点,当点的坐标为时,的周长恰为.
(1)求椭圆的方程;
(2)过点作直线交椭圆于两点,且 ,求面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com