精英家教网 > 高中数学 > 题目详情
10.已知椭圆的中心在坐标原点,右焦点F的坐标为(3,0),直线L:x+2y-2=0交椭圆于A.B两点,线段AB的中点为$M(1,\frac{1}{2})$;
(1)求椭圆的方程;
(2)动点N满足NA⊥NB,求动点N的轨迹方程.

分析 (1)利用点差法,结合中点坐标公式,求椭圆的方程;
(2)动点N满足NA⊥NB,动点N的轨迹是以M为圆心,AB为直径的圆,即可求动点N的轨迹方程.

解答 解:(1)设椭圆方程为$\frac{x^2}{m}+\frac{y^2}{n}=1,(m>n>0)$,
设A(x1,y1),B(x2,y2),
则$\frac{{({x_1}+{x_2})({x_1}-{x_2})}}{m}=-\frac{{({y_1}+{y_2})({y_1}-{y_2})}}{n}$
∵x1+x2=2,y1+y2=1
∴m=4n,m=n+9     
∴m=12,n=3.
椭圆方程为$\frac{x^2}{12}+\frac{y^2}{3}=1$;
(2)由$\frac{x^2}{12}+\frac{y^2}{3}=1,与x+2y-2=0$得y2-y-1=0,
则y1y2=-1,y1+y2=1
因NA⊥NB,∴动点N的轨迹是以M为圆心,AB为直径的圆,
$|{AB}|=\sqrt{(1+{2^2}){{({y_1}-{y_2})}^2}}=5$,${r^2}=\frac{25}{4}$,
故动点N的轨迹方程为${(x-1)^2}+{(y-\frac{1}{2})^2}=\frac{25}{4}$.

点评 本题考查椭圆方程,考查圆的方程,考查点差法的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设数列{an}满足:a1=1,a2=$\frac{5}{3}$,an+2=$\frac{5}{3}$an+1-$\frac{2}{3}$an (n=1,2,…).令bn=an+1-an
(1)求证:数列{bn}是等比数列,并求bn
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数$f(x)=\frac{x}{{({2x+1})({x-a})}}$为奇函数,则a=(  )
A.$\frac{3}{4}$B.1C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)满足f(x+1)=-x2-4x+l,函数g(x)=$\left\{\begin{array}{l}{f(x)-4,x≤m}\\{x-4,x>m}\end{array}\right.$有两个零点,则m的取值范围为[-2,0)∪[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x+1|+|x-1|.
(1)若?x0∈R,使得不等式f(x0)≤m成立,求实数m的最小值M;
(2)在(1)的条件下,若正数a,b满足3a+b=m,求$\frac{1}{2a}+\frac{1}{a+b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.集合$M=\left\{{\left.m\right|\frac{10}{m+1}∈Z,m∈{N^*}}\right\}$用列举法表示{1,4,9}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|-1<x<4},$B=\left\{{x\left|{-5<x<\frac{3}{2}}\right.}\right\}$,C={x|1-2a<x<2a}.
(1)求A∩B,A∪B;
(2)若集合C=∅,求实数a的取值范围;
(3)若C⊆(A∩B),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={0,2,4,6},B={n∈N|2n<8},则集合A∩B的子集个数为(  )
A.8B.7C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某同学参加学校自主招生3门课程的考试,假设该同学第一门课程取得优秀成绩概率为$\frac{2}{5}$,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为
ξ0123
p$\frac{6}{125}$xy$\frac{24}{125}$
(1)求该生至少有1门课程取得优秀成绩的概率及求p,q(p<q)的值;
(2)求该生取得优秀成绩课程门数的数学期望Eξ.

查看答案和解析>>

同步练习册答案