精英家教网 > 高中数学 > 题目详情
已知x,y满足不等式组 
x+y≥3 
x-y≥-1 
x-3≤0 
那么z=x+2y的最小值是
3
3
分析:根据已知的约束条件
x+y≥3 
x-y≥-1 
x-3≤0 
画出满足约束条件的可行域,再用角点法,求出目标函数的最小值.
解答:解:约束条件
x+y≥3 
x-y≥-1 
x-3≤0 
对应的平面区域如下图示:
当直线z=x+2y过A(3,0)时,Z取得最小值3.
故答案为:3.
点评:本题考查的知识点是线性规划,考查画不等式组表示的可行域,考查数形结合求目标函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x,y满足不等式组
x-y-1≥0
x+y-1≤0
x+2y+1≥0
则z=20-2y+x的最大值是(  )
A、21B、23C、25D、27

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足不等式组
x+y≤4
ax+by-2a≤0
,且目标函数z=2x+y的最大值为7,则a+b=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y满足不等式
2x+y≤6
x+y≤5
x≥0,y≥0
,在这些点中,使目标函数z=6x+8y取得最大值的点的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知x,y满足不等式组
x+y≤4
ax+by-2a≤0
,且目标函数z=2x+y的最大值为7,则a+b=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•南汇区二模)(文)已知x,y满足不等式组
x-y-1≥0
x+y-1≤0
x+2y+1≥0
则z=20-2y+x的最大值=
27
27

查看答案和解析>>

同步练习册答案