精英家教网 > 高中数学 > 题目详情

【题目】已知平行四边形,平面平面,三角形为等边三角形,

(Ⅰ)求证:平面平面

(Ⅱ)若平面

①求异面直线所成角的余弦值;

②求二面角的正弦值.

【答案】(Ⅰ)见解析;(Ⅱ)①.

【解析】

(Ⅰ)先证明,以为原点,轴建立空间直角坐标系,利用向量的数量积为零可得,从而平面,再由面面垂直的判定定理可得结果;(Ⅱ)设,利用,求得,①求出的坐标,利用空间向量夹角余弦公式可得结果;②利用向量垂直数量积为零列方程,分别求出平面的法向量与平面的法向量,由空间向量夹角余弦公式求得二面角的余弦值,进而可得结果.

(Ⅰ)

平行四边形

由余弦定理可得

由勾股定理可得

如图,以为原点建立空间直角坐标系

,∴平面

又∵平面,∴平面平面

(Ⅱ)∵,∴设

平面,∴,∴,∴

∴异面直线所成角的余弦值为

②设为平面的法向量,则

可得

为平面的法向量,则

可得

∴二面角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在无穷数列中,,记项中的最大项为,最小项为,令.

1)若的前项和满足.

①求

②是否存在正整数满足?若存在,请求出这样的,若不存在,请说明理由.

2)若数列是等比数列,求证:数列是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为棱的中点.

(1)求证:平面

(2)求点到平面的距离,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(k+)lnx+,k∈[4,+∞),曲线y=f(x)上总存在两点M(x1,y1),N(x2,y2),使曲线y=f(x)在M,N两点处的切线互相平行,则x1+x2的取值范围为

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为,以椭圆的上顶点为圆心作圆,

,圆与椭圆在第一象限交于点,在第二象限交于点.

(1)求椭圆的方程;

(2)求的最小值,并求出此时圆的方程;

(3)设点是椭圆上异于的一点,且直线分别与轴交于点为坐标原点,求证:

为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50 kg

箱产量≥50 kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长都相等的正三棱柱中,是棱的中点,是棱上的动点.,随着增大,平面与底面所成锐二面角的平面角是(

A.增大B.先增大再减小

C.减小D.先减小再增大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今时代,手机的功能越来越丰富,这给我们的生活带来了很多的便利,然而过度玩手机已成为一个严重的社会问题,特别是在校学生过度玩手机,已严重影响了其身心发展和学业的进步.某校为了解学生使用手机的情况,从全校学生中随机抽取了100名学生,对他们每天使用手机的时间进行了统计,得到如下的统计表:

1)以样本估计总体,若在该校中任取一名学生,求该生使用手机时间不低于1小时的概率;

2)对样本中使用手机时间不低于1.5小时的学生,采用分层抽样的方法抽取6人,再在这6人中随机抽.2人,求抽取的2人使用手机时间均低于2小时的概率;

3)经过进一步统计分析发现,使用手机时间低于1小时的学生中,有25人综合素质考核为“优”,使用手机时间不低于1小时的学生中,有20人综合素质考核为“优”,问:是否能在犯错误的概率不超过0.1的前提下,认为综合素质考核为“优”与使用手机的时间有关?

附:.

查看答案和解析>>

同步练习册答案