【题目】已知平行四边形中,,平面平面,三角形为等边三角形,.
(Ⅰ)求证:平面平面;
(Ⅱ)若平面
①求异面直线与所成角的余弦值;
②求二面角的正弦值.
【答案】(Ⅰ)见解析;(Ⅱ)①;②.
【解析】
(Ⅰ)先证明,以为原点,为轴建立空间直角坐标系,利用向量的数量积为零可得,,从而平面,再由面面垂直的判定定理可得结果;(Ⅱ)设,利用,求得,①求出,的坐标,利用空间向量夹角余弦公式可得结果;②利用向量垂直数量积为零列方程,分别求出平面的法向量与平面的法向量,由空间向量夹角余弦公式求得二面角的余弦值,进而可得结果.
(Ⅰ)
平行四边形中
∵,,
由余弦定理可得,
由勾股定理可得,
如图,以为原点建立空间直角坐标系
∴,,,,
∴,,
∴,,∴,.
又,∴平面.
又∵平面,∴平面平面.
(Ⅱ)∵,∴设
∴,.
∵平面,∴,∴,∴.
∴.
①,
∴
∴异面直线与所成角的余弦值为.
②设为平面的法向量,则
可得,
设为平面的法向量,则
可得,
∴,
∴二面角的正弦值为.
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设点,直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在无穷数列中,,记前项中的最大项为,最小项为,令.
(1)若的前项和满足.
①求;
②是否存在正整数满足?若存在,请求出这样的,若不存在,请说明理由.
(2)若数列是等比数列,求证:数列是等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(k+)lnx+,k∈[4,+∞),曲线y=f(x)上总存在两点M(x1,y1),N(x2,y2),使曲线y=f(x)在M,N两点处的切线互相平行,则x1+x2的取值范围为
A. (,+∞) B. (,+∞) C. [,+∞) D. [,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的离心率为,以椭圆的上顶点为圆心作圆,
,圆与椭圆在第一象限交于点,在第二象限交于点.
(1)求椭圆的方程;
(2)求的最小值,并求出此时圆的方程;
(3)设点是椭圆上异于的一点,且直线分别与轴交于点为坐标原点,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50 kg | 箱产量≥50 kg | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长都相等的正三棱柱中,是棱的中点,是棱上的动点.设,随着增大,平面与底面所成锐二面角的平面角是( )
A.增大B.先增大再减小
C.减小D.先减小再增大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当今时代,手机的功能越来越丰富,这给我们的生活带来了很多的便利,然而过度玩手机已成为一个严重的社会问题,特别是在校学生过度玩手机,已严重影响了其身心发展和学业的进步.某校为了解学生使用手机的情况,从全校学生中随机抽取了100名学生,对他们每天使用手机的时间进行了统计,得到如下的统计表:
(1)以样本估计总体,若在该校中任取一名学生,求该生使用手机时间不低于1小时的概率;
(2)对样本中使用手机时间不低于1.5小时的学生,采用分层抽样的方法抽取6人,再在这6人中随机抽.取2人,求抽取的2人使用手机时间均低于2小时的概率;
(3)经过进一步统计分析发现,使用手机时间低于1小时的学生中,有25人综合素质考核为“优”,使用手机时间不低于1小时的学生中,有20人综合素质考核为“优”,问:是否能在犯错误的概率不超过0.1的前提下,认为综合素质考核为“优”与使用手机的时间有关?
附:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com