精英家教网 > 高中数学 > 题目详情
8.已知双曲线C:$\frac{{x}^{2}}{4}-{y}^{2}$=1,P为C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设F1,F2分别为双曲线C的两个焦点,若∠F1PF2为钝角,求点P的横坐标的取值范围.

分析 (1)利用点到直线的距离公式,结合双曲线的方程,即可证明;
(2)设双曲线上一点P(x,y),若双曲线上一点P使得∠F1PF2为钝角,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$<0,由此列不等式解得P点横坐标的取值范围.

解答 (1)证明:设P(x,y),则
∵双曲线C的两条渐近线的方程为y=±$\frac{1}{2}$x,即x±2y=0
∴点P到双曲线C的两条渐近线的距离的乘积$\frac{|(x+2y)(x-2y)|}{5}$=$\frac{4}{5}$;
(2)解:设P(x,y),则$\overrightarrow{P{F}_{1}}$=(x+$\sqrt{5}$,y),$\overrightarrow{P{F}_{2}}$=(x-$\sqrt{5}$,y),
∵∠F1PF2为钝角,
∴$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$<0
∴cos∠F1PF2<0
∴(x+$\sqrt{5}$,y)•(x-$\sqrt{5}$,y)<0  
即x2+y2-5<0 
又$\frac{{x}^{2}}{4}-{y}^{2}$=1
∴$\frac{5}{4}$x2-6<0 
解得x<-$\frac{2\sqrt{30}}{5}$或x>$\frac{2\sqrt{30}}{5}$.

点评 本题考查双曲线的标准方程及向量知识,解题时要能熟练的由双曲线定义和标准方程解焦点三角形问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在空间直角坐标系中,点A(1,2,-3)关于x轴的对称点为(  )
A.(1,-2,-3)B.(1,-2,3)C.(1,2,3)D.(-1,2,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.写出一个以椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1和双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的离心率为根的方程x2-$\frac{5}{2}$x+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知双曲线M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一条渐近线方程是$\sqrt{3}$x+y=0,点D(1,$\sqrt{2}$)在C上,过点(0,1)且斜率为k的直线1与双曲线M交于不同的两点A、B.
(1)求双曲线M的方程;
(2)若以线段AB为直径的圆经过坐标原点O,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,点E在直角三角形ABC的斜边AB上,四边形CDEF为正方形,已知正方形CDEF的面积等于36.设AF=x,直角三角形ABC的面积S=f(x).
(Ⅰ)求函数f(x)表达式;
(Ⅱ)利用函数单调性定义求f(x)的单调区间,并求出f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图给出的是计算1×3+3×5+5×7+…+13×15的值的一个程序框图,其中判断框内应填入的条件不正确的是(  )
A.i≥13?B.i>14?C.i≥14?D.i≥15?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设x,y∈R,给出四个点A(2x-1,y),B(1,1),C(x2+1,4),D(x2-1,1)
(1)若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,把y表示成x的函数y=f(x);
(2)对数列{an},设a1=a2=1,且${4}^{{a}_{n+1}}$=$\frac{2}{3}$f(an)+$\frac{4}{3}$,(n≥2,n∈N*),求$\underset{lim}{n→∞}$an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$都是单位向量,且$\overrightarrow{p}$=$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$,试求|$\overrightarrow{p}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x、y为正数,且$\frac{3}{1+x}$+$\frac{3}{1+y}$=1,则xy的最小值为25.

查看答案和解析>>

同步练习册答案