精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2lnx
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求证:f(x)≥lnx-x+2.
分析:(Ⅰ)求出f′(x),在定义域内解不等式f′(x)>0,f′(x)<0,即得f(x)的单调区间;
(Ⅱ)构造函数g(x)=f(x)-(lnx-x+2)=x2-3lnx+x-2,问题转化为g(x)min≥0,从而转化为函数最值问题求解.
解答:解:(Ⅰ)由题意知x>0,f′(x)=2x-
2
x
=
2(x2-1)
x2
,令f′(x)=0,得x=-1(舍)或x=1,
当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,
所以f(x)的增区间为(1,+∞),减区间为(0,1).
(Ⅱ)令g(x)=f(x)-(lnx-x+2)=x2-3lnx+x-2,
g′(x)=2x-
3
x
+1=
2x2+x-3
x
=
(2x+3)(x-1)
x

令g′(x)>0,得x>1,令g′(x)<0,得0<x<1,
所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
所以g(x)min=g(1)=0,
所以g(x)≥0,即f(x)≥lnx-x+2.
点评:本题考查应用导数研究函数的单调性、最值问题,考查分析问题解决问题的能力,考查转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案