精英家教网 > 高中数学 > 题目详情

【题目】如图,在南北方向有一条公路,一半径为100m的圆形广场(圆心为O)与此公路一边所在直线l相切于点A.点P为北半圆弧(弧APB)上的一点,过P作直线l的垂线,垂足为Q.计划在△PAQ内(图中阴影部分)进行绿化.设△PAQ的面积为S(单位:m2).
(1)设∠BOP=α(rad),将S表示为α的函数;
(2)确定点P的位置,使绿化面积最大,并求出最大面积.

【答案】
(1)解:AQ=100sinα,PQ=100+100cosα,α∈(0,π),

则△PAQ的面积

=5000(sinα+sinαcosα),(0<α<π)


(2)解:S/=5000(cosα+cos2α﹣sin2α)

=5000(2cos2α+cosα﹣1)

=5000(2cosα﹣1)(cosα+1),

,cosα=﹣1(舍去),此时

关于α为增函数;

关于α为减函数.

∴当 时, (m2),此时PQ=150m.

答:当点P距公路边界l为150m时,绿化面积最大,


【解析】(1)若∠BOP=α,则P点坐标(x,y)中,x=AQ=100sinα,y=PQ=100+100cosα,α∈(0,π),根据三角形面积公式,我们易将S表示为α的函数.(2)由(1)中结论,我们可利用导数法,判断函数的单调性,进而求出函数的最大值,即最大绿化面积.
【考点精析】认真审题,首先需要了解函数的最大(小)值与导数(求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某批产品共有1 564,产品按出厂顺序编号,号码从11 564,检测员要从中抽取15件产品作检测,请给出一个系统抽样方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 . 

(1)若函数上是减函数,求实数的取值范围;

(2)是否存在整数 ,使得的解集恰好是,若存在,求出 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程: ,直线l的参数方程为
(1)若直线l与曲线C只有一个公共点,求实数a;
(2)若点P,Q分别为直线l与曲线C上的动点,若 ,求实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数为偶函数.

(1)求的解析式;

(2)若函数在区间上为单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:

0

0

5

0

-5

0

1)求出实数

2)求出函数的解析式;

(3)将图像上所有点向左平移个单位长度,得到图像,求的图像离原点最近的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数的图象在点 处的切线方程;
(2)当 时,求证:
(3)若 对任意的 恒成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,当 时,函数 取得极值 .
(Ⅰ)求函数 的解析式;
(Ⅱ)若方程 有3个不等的实数解,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数.

(1)求的值;

(2)若函数没有零点,求得取值范围;

(3)若函数 的最小值为0,求实数的值.

查看答案和解析>>

同步练习册答案