精英家教网 > 高中数学 > 题目详情
设数列{an}的各项都是正数,记Sn为数列{an}的前n项和,且对任意n∈N*,都有a13+a23+a33+…+an3=Sn2
(Ⅰ)求证:an2=2Sn-an
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若bn=3n+(-1)n-1λ•2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意 n∈N*,都有bn+1>bn
分析:本题考查的是数列与不等式的综合题.在解答时:
(I)首先讨论n=1和n≥2时两种情况,结合通项与前n项和之间的关系通过作差、变形化简即可获得问题的解答;
(II)利用(1)的结论写出相邻的一项对应的关系式,注意保证n≥2.用作差法可分析知数列an为等差数列,进而即可获得数列的通项公式;
(III)首先假设存在λ使得满足题意,然后计算化简bn+1-bn,再结合恒成立问题进行转化,将问题转化为:(-1)n-1•λ<(
3
2
)
n-1
对任意的n∈N*恒成立.然后分n为奇偶数讨论即可获得λ的范围,再结合为整数即可获得问题的解答.
解答:解:(Ⅰ)证明:∵a13+a23+a33+…+an3=Sn2
当n=1时,a13=a12
∵a1>0,∴a1=1.
当n≥2时,a13+a23+a33+…+an3=Sn2.①a13+a23+a33+…+an-13=Sn-12.②
①-②得  an3=an(2a1+2a2+…+2an-1+an
∵an>0,∴an2=2a1+2a2+…+2an-1+an
即an2=2Sn-an
∵a1=1适合上式,
∴an2=2Sn-an(n∈N*).(4分)
(Ⅱ)由(Ⅰ)知 an2=2Sn-an(n∈N*).③
当n≥2时,an-12=2Sn-1-an-1.④
③-④得an2-an-12=2(Sn-Sn-1)-an+an-1=2an-an+an-1=an+an-1
∵an+an-1>0,∴an-an-1=1.
∴数列{an}是首项为1,公差为1的等差数列,可得an=n.(8分)
(Ⅲ)∵an=n,∴bn=3n+(-1)n-1λ•2an=3n+(-1)n-1λ•2n
欲使bn+1-bn=[3n+1+(-1)nλ•2n+1]-[3n+(-1)n-1λ•2n]
 & & &=2
3n-3λ(-1)n-12n>0

(-1)n-1•λ<(
3
2
)n-1
成立.⑤
当n=2k-1,k=1,2,3,…时,⑤式即为λ<(
3
2
)2k-2
.⑥
依题意,⑥式对k=1,2,3…都成立,∴λ<1.
当n=2k,k=1,2,3,…时,⑤式即为λ>-(
3
2
)2k-1
.⑦
依题意,⑦式对k=1,2,3,…都成立,∴λ>-
3
2

-
3
2
<λ<1,又λ≠0

∴存在整数λ=-1,使得对任意n∈N*,都有bn+1>bn.(12分)
点评:本题考查的是数列与不等式的综合题.在解答的过程当中充分体现了数列通项与前n项和的知识、分类讨论的知识以及恒成立问题的解答规律.值得同学们体会和反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,且对任意n∈N+,都有a13+a23+a33+…+an3=Sn2,其中Sn为数列{an}的前n项和.
(Ⅰ)求证:an2=2Sn-an
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=3n+(-1)n-1λ•2an(λ为非零整数,n∈N*)试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,Sn是其前n项和,且对任意n∈N*都有an2=2Sn-an
(1)求数列{an}的通项公式;
(2)若bn=(2n+1)2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正实数,bn=log2an,若数列{bn}满足b2=0,bn+1=bn+log2p,其中p为正常数,且p≠1.
(1)求数列{an}的通项公式;
(2)是否存在正整数M,使得当n>M时,a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使结论成立的p的取值范围和相应的M的最小值;若不存在,请说明理由;
(3)若p=2,设数列{cn}对任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,问数列{cn}是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正数,它的前n项和为Sn,点(an,Sn)在函数y=
1
8
x2+
1
2
x+
1
2
的图象上,数列{bn}的通项公式为bn=
an+1
an
+
an
an+1
,其前n项和为Tn
(1)求an;   
(2)求证:Tn-2n<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)设数列{an}的各项均为正数,其前n项的和为Sn,对于任意正整数m,n,Sm+n=
2a2m(1+S2n)
-1
恒成立.
(1)若a1=1,求a2,a3,a4及数列{an}的通项公式;
(2)若a4=a2(a1+a2+1),求证:数列{an}成等比数列.

查看答案和解析>>

同步练习册答案