精英家教网 > 高中数学 > 题目详情
如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
2
2
,过右焦点F且与x轴垂直的直线交椭圆于A,B两点,且|AB|=
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+t(t≠0)与椭圆C相交于M,N两点,直线AO平分线段MN,求△OMN的面积的最大值及此时直线l的方程.
(Ⅰ)由题意,
c
a
=
2
2
2b2
a
=
2

∴a=
2
,b=1
∴椭圆C的方程为
x2
2
+y2=1

(Ⅱ)由(Ⅰ)知A(1,
2
2
),∴直线AO的方程为y=
2
2
x.
y=kx+t(t≠0)代入椭圆C的方程,消去y得(1+2k2)x2+4ktx+2t2-2=0
设M(x1,y1),N(x2,y2),中点P(x0,y0),由韦达定理得x0=-
2kt
1+2k2
,y0=
t
1+2k2

由点P在直线y=
2
2
x上,得k=-
2
2

∴x1+x2=-
2
t,x1x2=t2-1,
|MN|=
1+
1
2
•|x1-x2|=
6-3t2

又点O到直线MN的距离d=
|t|
3
2

∴△OMN的面积为
2
t2(2-t2)
2
t2+2-t2
2
=
2

∴当t=±1时,△OMN的面积取最大值
2
,直线l的方程为y=-
2
2
x±1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的方程为x2=2py(p>0),焦点F为(0,1),点P(x1,y1)是抛物线上的任意一点,过点P作抛物线的切线交抛物线的准线l于点A(s,t).
(1)求抛物线C的标准方程;
(2)若x1∈[1,4],求s的取值范围.
(3)过点A作抛物线C的另一条切线AQ,其中Q(x2,y2)为切点,试问直线PQ是否恒过定点,若是,求出定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

【理科】抛物线顶点在原点,焦点是圆x2+y2-4x=0的圆心.
(1)求抛物线的方程;
(2)直线l的斜率为2,且过抛物线的焦点,与抛物线交于A、B两点,求弦AB的长;
(3)过点P(1,1)引抛物线的一条弦,使它被点P平分,求这条弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点P(-3,0)且倾斜角为30°直线和曲线
x=t+
1
t
y=t-
1
t
(t为参数)相交于A、B两点.则线段AB的长为(  )
A.
4
3
51
B.
17
C.
51
D.2
17

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.
(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2).设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C:(5-m)x2+(m-2)y2=8(m∈R)
(1)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2)设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线y2=2px(p>0),其准线方程为x=-1,过准线与x轴的交点M做直线l交抛物线于A、B两点.
(Ⅰ)若点A为MB中点,求直线l的方程;
(Ⅱ)设抛物线的焦点为F,当AF⊥BF时,求△ABF的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=4x的焦点作倾斜角为
π
3
的直线与抛物线交于点A、B,则|AB|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是(  ) 
A.若两个角互补,则这两个角是邻补角;
B.若两个角相等,则这两个角是对顶角
C.若两个角是对顶角,则这两个角相等;
D.以上判断都不对

查看答案和解析>>

同步练习册答案