【题目】已知椭圆的离心率为,左、右焦点分别为、,为椭圆C上一点,且的中点B在y轴上,.
(1)求椭圆C的标准方程:
(2)若直线交椭圆于P、Q两点,若PQ的中点为N,O为原点,直线ON交直线于点M,求的最大值.
【答案】(1);(2)
【解析】
(1)由BO为的中位线,可求出,由此可设,代入椭圆方程,联立,,即可求出,,从而得到椭圆方程;
(2)设、,联立,化为关于x的一元二次方程,由根与系数的关系及中点坐标公式求出PQ的中点N的坐标,再由弦长公式求出,由点N的坐标写出直线ON的方程,求出点M.的坐标,再由两点间距离公式求出,然后求,换元法求出其最大值.
(1)因为B为的中点, O为线段的中点,
所以BO为的中位线,所以,
又因为,所以,所以可设
又为椭圆C上一点,所以将代入椭圆方程可得
又,,联立解得,,
故所求椭圆方程为;
(2)由直线方程为,
联立,可得.
设、,则,,
所以为;
所以PQ的中点N坐标为,
因此直线ON的方程为,
从而点M为,又,所以,
设,令,则,
所以,
因此当,即时取得最大值.
科目:高中数学 来源: 题型:
【题目】有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(1)将红色卡片和蓝色卡片分别放在两个袋中,然后从两个袋中各取一张卡片,求两张卡片数字之积为偶数的概率
(2)将五张卡片放在一个袋子中,从中任取两张,求两张卡片颜色不同的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间的零件,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:
(Ⅰ)根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与一等品产出率是否有关?
甲工艺 | 乙工艺 | 总计 | |
一等品 | |||
非一等品 | |||
总计 |
P(K2≥k) | 0.1 | 0.05 | 0.01 |
k | 2.706 | 3.841 | 6.635 |
附:,其中.
(Ⅱ)以上述两种工艺中各种产品的频率作为相应产品产出的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,从一件产品的平均利润考虑,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知底面边长为a的正三棱柱(底面是等边三角形的直三棱柱)的六个顶点在球上,且球与此正三棱柱的5个面都相切,则球与球的表面积之比为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:
① ②是等边三角形 ③AB与平面BCD所成的角是 ④AB与CD所成角为,其中错误的结论个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)若与有且仅有三个公共点,求的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上的三点 、 、 .
(1)求以 、 为焦点且过点 的椭圆的标准方程;
(2)设点 、 、 关于直线 的对称点分别为 、 、 ,求以 、 为焦点且过点 的双曲线的标准方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com