精英家教网 > 高中数学 > 题目详情
9.下列命题中,是真命题的是(  )
A.?x0∈R,ex0≤0
B.?x∈R,2x>x2
C.已知a,b为实数,则a+b=0的充要条件是$\frac{a}{b}$=-1
D.已知a,b为实数,则ab>1是a>1且b>1 的必要不充分条件

分析 由指数函数ex>0恒成立,即可判断A;由x=2或4,可得2x=x2,即可判断B;
由b为0和不为0,结合充分必要条件,即可判断C;
由a=-3,b=-2,满足ab>1,推不出a>1且b>1,但a>1且b>1,可得ab>1,即可判断D.

解答 解:对于A,由ex>0恒成立,可得?x0∈R,ex0≤0,不正确;
对于B,由x=2或4,可得2x=x2,可得?x∈R,2x>x2不正确;
对于C,已知a,b为实数,若b≠0时,则a+b=0的充要条件是$\frac{a}{b}$=-1,b=0不正确,
a+b=0的充分不必要条件是$\frac{a}{b}$=-1,故C错;
对于D,已知a,b为实数,则ab>1是a>1且b>1 的必要不充分条件,由a>1且b>1,可得ab>1,
反之若a=-3,b=-2,满足ab>1,推不出a>1且b>1,故D正确.
故选D.

点评 本题考查命题的真假判断,主要是全称命题和特称命题的判断、以及充分必要条件的判断,注意运用定义法,考查判断能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2011)=5,则f(2012)=(  )
A.1B.3C.5D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知向量$\overrightarrow{AB}=({6,1}),\overrightarrow{BC}=({x,y}),\overrightarrow{CD}=({-2,-3})$.
(1)若$\overrightarrow{BC}$∥$\overrightarrow{DA}$,求x与y之间的关系;
(2)在(1)的条件下,若有$\overrightarrow{AC}⊥\overrightarrow{BD}$,求x,y的值以及四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校同学设计了一个如图所示的“蝴蝶形图案”.其中AC,BD是过抛物线y=x2的两条相互垂直的弦(点A,B在第二象限),且AC,BD交于点$F({0,\frac{1}{4}})$,点E为y轴上的一点,记∠EFA=α,其中α为锐角:
(1)设线段AF的长为m,将m表示为关于α的函数;
(2)求“蝴蝶形图案”面积的最小值,并指出取最小值时α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$g(x)=f(x)+\frac{1}{5}{x^2}$的图象在点P(5,g(5))处的切线方程是y=-x+8,则f(5)+f'(5)=(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若直线y=kx+1(k∈R)与曲线y=x3+ax+b(a,b∈R)相切于点A(1,3),则log2k+ab的值为(  )
A.2B.-2C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条商业街道,要求街道PQ与AB垂直,街道PR与AC垂直,线段RQ表示第三条街道.
(1)如果P位于弧BC的中点,求三条街道的总长度;
(2)由于环境的原因,三条街道PQ、PR、RQ每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.写出三角函数诱导公式(一)~(六)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}满足a1+a2+a3=9,a2+a8=18,数列{bn}的前n项和为Sn,且满足Sn=2bn-2.
(1)求数列{an},{bn}的通项公式;
(2)数列{cn}满足${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案