精英家教网 > 高中数学 > 题目详情

【题目】在对人们的休闲方式的一次调查中,共调查了110人,其中女性50人,男性60人.女性中有30人主要的休闲方式是看电视,另外20人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外40人主要的休闲方式是运动.

(1)根据以上数据建立一个2×2列联表;

(2)判断性别与休闲方式是否有关系.

下面临界值表供参考:

P(K2≥k)

0.10

0.05

0.010

0.001

k

2.706

3.841

6.635

10.828

(参考公式:K2=

【答案】(1)详见解析;(2)有的把握认为休闲方式与性别有关系.

【解析】

1)根据数据建立表格即可。

2)根据公式计算出6.635比较,若大于等于则有的把握认为休闲方式与性别有关系,反之则无。

(1)2×2的列联表:

休闲方式性别

看电视

运动

合计

30

20

50

20

40

60

合计

50

60

110

(2)根据列联表中的数据,计算的观测值为

=≈7.822>6.635,

所以有99%的把握认为休闲方式与性别有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.

(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;

(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体.

(1)证明:平面

(2)求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆系方程 ( ), 是椭圆的焦点, 是椭圆上一点,且.

(1)求的方程;

(2)为椭圆上任意一点,过且与椭圆相切的直线与椭圆交于 两点,点关于原点的对称点为,求证: 的面积为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学家欧拉在1765年提出,任意三角形的外心、重心、垂心位于同一条直线上,后人称这条直线为欧拉线.已知ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为xy+2=0,则顶点C的坐标为

A. (-4,0) B. (-3,-1) C. (-5,0) D. (-4,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m)如下:

甲:1.701.651.681.691.721.731.681.67

乙:1.601.731.721.611.621.711.701.75.

经预测,跳高1.65m就很可能获得冠军.该校为了获取冠军,可能选哪位选手参赛?若预测跳高1.70m方可获得冠军呢?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:

(1)求图中的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(3)若将频率视为概率,现从全市高二学生中随机查看5名学生的期中考试语文成绩,记成绩优秀(不低于80分)的学生人数为,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的各棱长均相等, 底面EF分别为棱的中点.

1)过作平面α,使得直线BE//平面α,若平面α与直线交于点H,指出点H所在的位置,并说明理由;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了整顿道路交通秩序,某地考虑对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通人中随机抽取200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如下数据:

处罚金额(单位:元)

5

10

15

20

会闯红灯的人数

50

40

20

0

若用表中数据所得频率代替概率.

(1)当处罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?

(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其它市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?

查看答案和解析>>

同步练习册答案