精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四边形ABCD是正方形,AE平面ABCDPDAEPDAD2EA2GFH分别为BEBPPC的中点.

1)求证:平面ABE平面GHF

2)求直线GH与平面PBC所成的角θ的正弦值.

【答案】1)证明见解析(2

【解析】

1)通过证明BC平面ABEFHBC,证得FH平面ABE,即可证得面面垂直;

2)建立空间直角坐标系,利用向量方法求线面角的正弦值.

1)由题:,AE平面ABCDBC平面ABCD,所以AEBC

四边形ABCD是正方形,ABBCAEAB是平面ABE内两条相交直线,

所以BC平面ABEFH分别为BPPC的中点,所以FHBC

所以FH平面ABEHF平面GHF,所以平面ABE平面GHF

2)由题可得:DADCDP两两互相垂直,所以以D为原点,DADCDPxyz轴的正方向建立空间直角坐标系如图所示:

所以,设平面PBC的法向量

,取为平面PBC的一个法向量,

所以直线GH与平面PBC所成的角θ的正弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,的中点,点上一点,.动点在上底面上,且满足三棱锥的体积等于1,则直线所成角的正切值的最大值为(

A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市旅游管理部门为提升该市26个旅游景点的服务质量,对该市26个旅游景点的交通、安全、环保、卫生、管理五项指标进行评分,每项评分最低分0分,最高分100分,每个景点总分为这五项得分之和,根据考核评分结果,绘制交通得分与安全得分散点图、交通得分与景点总分散点图如下:

请根据图中所提供的信息,完成下列问题:

I)若从交通得分前6名的景点中任取2个,求其安全得分都大于90分的概率;

II)若从景点总分排名前6名的景点中任取3个,记安全得分不大于90分的景点个数为,求随机变量的分布列和数学期望;

III)记该市26个景点的交通平均得分为安全平均得分为,写出的大小关系?(只写出结果)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间直角坐标系中,已知正四棱锥P-ABCD的所有棱长均为6,正方形ABCD的中心为坐标原点OADBC平行于x轴,ABCD平行于y轴,顶点Pz轴的正半轴上,点MN分别在PABD上,且.

1)若,求直线MNPC所成角的大小;

2)若二面角A-PN-D的平面角的余弦值为,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆的右焦点、右顶点分别为FA,过原点的直线与椭圆C交于点PQ(点P在第一象限内),连结PAQF的面积是面积的3倍.

1)求椭圆C的标准方程;

2)已知M为线段PA的中点,连结QAQM

①求证:QFM三点共线;

②记直线QPQMQA的斜率分别为,若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为菱形,且,点在面上的投影恰在上,点中点.

1)求证:为线段的中点;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,以原点为圆心,短半轴长为半径的圆恰好经过椭圆的两焦点,且该圆截直线所得的弦长为.

1)求椭圆的标准方程;

2)过定点的直线交椭圆于两点,椭圆上的点满足,试求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年底,武汉发生了新冠肺炎疫情,2020年初开始蔓延.党中央国务院面对“突发灾难”果断采取措施,举国上下,万众一心支援武汉,全国各地医疗队陆续增援湖北,纷纷投身疫情防控与救治病人之中.为了分担“抗疫英雄”的后顾之忧,某校教师志愿者开展“爱心辅导”活动,为抗疫前线医务工作者子女开展在线辅导.春节期间随机安排甲乙两位志愿者为一位初中生辅导功课共3次,每位志愿者至少辅导1次,每一次只有1位志愿者辅导,到甲恰好辅导两次的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数).

1)求曲线的参数方程与直线的普通方程;

2)设点过为曲线上的动点,点和点为直线上的点,且满足为等边三角形,求边长的取值范围.

查看答案和解析>>

同步练习册答案