精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若函数时取得极值,求实数的值;

2)若对任意恒成立,求实数的取值范围.

【答案】(1)(2)

【解析】试题分析:(1)由 ,依题意有: ,即 ,通过检验满足在 时取得极值. (2)依题意有: 从而 ,令,得:,通过讨论,进而求出 的取值范围.

试题解析:

(1)

依题意有,即,解得.

检验:当时,.

此时,函数上单调递减,在上单调递增,满足在时取得极值.

综上可知.

(2)依题意可得:对任意恒成立等价转化为上恒成立.

因为

得:.

,即时,函数上恒成立,则上单调递增,

于是,解得,此时

,即时,时,时,,所以函数上单调递减,在上单调递增,

于是,不合题意,此时.

综上所述,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下列联表:

性别与读营养说明列联表

总计

读营养说明

16

8

24

不读营养说明

4

12

16

总计

20

20

40

根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?

从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数的分布列及其均值即数学期望

注:,其中为样本容量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱(侧棱垂直于底面,且底面是正三角形)中,是棱上一点.

(1)若分别是的中点,求证:平面

(2)若上靠近点的一个三等分点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为是6与的等差中项.

(1)求数列的通项公式;

(2)是否存在正整数,使不等式恒成立,若存在,求出的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当求函数的单调区间

(2)当对任意恒成立求实数的取值范围

(3)设函数的图象在两点处的切线分别为求实数最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)证明当时,关于的不等式恒成立;

(3)若正实数满足,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点到两点的距离之和等于4,设点的轨迹为,直线交于两点,

(1)写出的方程;

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数在区间不单调,求实数的取值范围;

(2)当时,不等式恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为

1)若为等边三角形,求椭圆的方程;

2)若椭圆的短轴长为2,过点的直线与椭圆相交于两点,且,求直线的方程.

查看答案和解析>>

同步练习册答案