精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= x3x2axax∈R,其中a>0.

(1)求函数f(x)的单调区间;

(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.

【答案】(1) 单调递增区间是(-∞,-1),(a,+∞);单调递减区间是(-1,a).(2)

【解析】(1)f′(x)x2(1a)xa(x1)(xa)

f′(x)0,得x1=-1x2a0.

x变化时,f′(x)f(x)的变化情况如下表:

x

(,-1)

1

(1a)

a

(a,+∞)

f′(x)


0


0


f(x)


极大值


极小值


故函数f(x)的单调递增区间是(,-1)(a,+∞);单调递减区间是(1a)

(2)(1)f(x)在区间(2,-1)内单调递增,在区间(10)内单调递减,从而函数f(x)在区间(2,0)内恰有两个零点当且仅当解得0a.

所以a的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:

(2)设函数 ,且有两个不同的零点

①求实数的取值范围; ②求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点直线AMBM相交于点M,且它们的斜率之和为2.

1)设,求的表达式,并写出函数的定义域;

2)判断函数的奇偶性?并给出证明;

3)试用函数单调性的定义证明:在定义域上不是增函数,但在(01)∪(1+)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)试讨论函数的单调性;

2)若,且函数有两个零点,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足:Sn1,且an>0nN*.

1)求a1a2a3,并猜想{an}的通项公式;

2)证明(1)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为矩形,均为等边三角形,

(1)过作截面与线段交于点,使得平面,试确定点的位置,并予以证明;

(2)在(1)的条件下,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示正方体ABCDABCD′的棱长为1EF分别是棱AACC′的中点过直线EF的平面分别与棱BBDD′分别交于MN两点BMxx[0,1]给出以下四个结论:

①平面MENF⊥平面BDDB

②直线AC∥平面MENF始终成立;

③四边形MENF周长Lf(x)x[0,1]是单调函数;

④四棱锥CMENF的体积Vh(x)为常数;

以上结论正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:

①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.

其中正确命题的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=sinωxcosωx(ω>0)的部分图象如图所示.

(1)求ω的值;

(2)若x∈(-),求f(x)的值域;

(3)若方程3[f(x)]2f(x)+m=0在x∈(-)内有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案