精英家教网 > 高中数学 > 题目详情
19.在棱长为1的正方体ABCD-A1B1C1D1中,E,F,P分别为棱DD1,CD,B1C的中点.求四面体B-PEF的体积.

分析 取CC1中点M,连结PM,EM,则四面体B-PEF的体积等于棱锥E-BCMP的体积减去棱锥P-CMEF和棱锥P-BCF的体积.

解答 解:取CC1中点M,取BC中点N,连结PM,EM,PN,
则四边形BCMP和四边形CMEF是直角梯形,PM=PN=CF=$\frac{1}{2}$,EM=BC=1,且PM⊥平面CMEF,PN⊥平面BCF,
∴S梯形BCMP=$\frac{1}{2}$(PM+BC)•MC=$\frac{1}{2}$×($\frac{1}{2}$+1)×$\frac{1}{2}$=$\frac{3}{8}$,
S梯形CMEF=$\frac{1}{2}$(EM+FC)•MC=$\frac{1}{2}$×(1+$\frac{1}{2}$)×$\frac{1}{2}$=$\frac{3}{8}$,
∴V棱锥E-BCMP=$\frac{1}{3}$•S梯形BCMP•EM=$\frac{1}{3}$×$\frac{3}{8}$×1=$\frac{1}{8}$,
V棱锥P-CMEF=$\frac{1}{3}$•S梯形CMEF•PM=$\frac{1}{3}$×$\frac{3}{8}$×$\frac{1}{2}$=$\frac{1}{16}$,
V棱锥P-BCF=$\frac{1}{3}$×$\frac{1}{2}$×FC×BC=$\frac{1}{3}×\frac{1}{2}×\frac{1}{2}×1$×$\frac{1}{2}$=$\frac{1}{24}$.
∴V棱锥B-PEF=V棱锥E-BCMP-V棱锥P-CMEF-V棱锥P-BCF=$\frac{1}{8}$-$\frac{1}{16}$-$\frac{1}{24}$=$\frac{1}{48}$.

点评 本题考查了空间几何体的体积的体积计算,作差法是求不规则几何体体积的一种常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|.
(1)指出f(x)=|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|的基本性质(两条即可,结论不要求证明),并作出函数f(x)的图象;
(2)关于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6个不同的实数解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆O:x2+y2=4和圆C:x2+y2-2x-y-2=0,记两圆的公共弦所在的直线为l.
(I)求直线l的方程.
(Ⅱ)设直线l与x轴的交点为M,过点M任作一条直线与圆O相交于点A,B,是否存在x轴上的定点N,连接AN,BN,使得∠ANM=∠BNM,若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是A1D1,A1A的中点.
(1)求证:BC1∥平面CEF;
(2)在棱A1B1上是否存在点G,使得EG⊥CE?若存在,求A1G的长度;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,长方体ABCD-A1B1C1D1的底面边长均为1,侧棱AA1=2,M,N分别是A1C1,A1A的中点,
(1)求$\overrightarrow{CN}$的长;
(2)求cos<$\overrightarrow{C{A}_{1}}$,$\overrightarrow{D{C}_{1}}$>的值;
(3)求证:A1C⊥D1M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sinωxcosωx在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增,则正数ω的最大值是(  )
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.y=2sin$\frac{x}{2}$+$\frac{π}{3}$的值域为[-2+$\frac{π}{3}$,2+$\frac{π}{3}$],当y取最大值时,x=x=π+4kπ,k∈Z;当y取最小值时,x=x=-π+4kπ,k∈Z,周期为4π,单调递增区间为[-π+4kπ,π+4kπ],k∈Z;单调递减区间为[π+4kπ,3π+4kπ],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点P为△ABC所在平面内一点,|$\overrightarrow{CA}$|=|$\overrightarrow{CB}$|=1且$\overrightarrow{CP}$=$\overrightarrow{CA}$+$\overrightarrow{CB}$,则点P在(  )
A.△ABC内心上B.直线AB上C.△ABC垂心上D.∠ACB的平分线上

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线y2=2x与过点M(m,0)(m>0)的直线交于A(x1,y1),B(x2,y2)两点.若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1,则实数m的值为1.

查看答案和解析>>

同步练习册答案