精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的函数y=f(x)为减函数,且函数y=f(x﹣1)的图象关于点(1,0)对称,若f(x2﹣2x)+f(2b﹣b2)≤0,且0≤x≤2,则x﹣b的取值范围是(
A.[﹣2,0]
B.[﹣2,2]
C.[0,2]
D.[0,4]

【答案】B
【解析】解:设P(x,y)为函数y=f(x﹣1)的图象上的任意一点,关于(1,0)对称点为(2﹣x,﹣y), ∴f(2﹣x﹣1)=﹣f(x﹣1),即f(1﹣x)=﹣f(x﹣1).
∴不等式f(x2﹣2x)+f(2b﹣b2)≤0化为f(x2﹣2x)≤﹣f(2b﹣b2)=f(1﹣1﹣2b+b2
=f(b2﹣2b),
∵函数y=f(x)为定义在R上的减函数,
∴x2﹣2x≥b2﹣2b,
化为(x﹣1)2≥(b﹣1)2
∵0≤x≤2,∴
画出可行域.设x﹣b=z,则b=x﹣z,由图可知:当直线b=x﹣z经过点(0,2)时,z取得最小值﹣2.
当直线b=x﹣z经过点(2,0)时,z取得最大值2.
综上可得:x﹣b的取值范围是[﹣2,2].
故选B.

【考点精析】本题主要考查了奇偶性与单调性的综合的相关知识点,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy曲线C1C2的参数方程分别是 (t是参数) (φ为参数).以原点O为极点x轴的正半轴为极轴建立极坐标系.

(1)求曲线C1的普通方程和曲线C2的极坐标方程;

(2)射线OMθα与曲线C1的交点为OP与曲线C2的交点为OQ|OP|·|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,棱AB的中点为P,若光线从点P出发,依次经三个侧面BCC1B1 , DCC1D1 , ADD1A1反射后,落到侧面ABB1A1(不包括边界),则入射光线PQ与侧面BCC1B1所成角的正切值的范围是(
A.(
B.( ,4)
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l:y=2x﹣1与双曲线)相交于A、B两个不

同的点,且(O为原点).

(1)判断是否为定值,并说明理由;

(2)当双曲线离心率时,求双曲线实轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣alnx+b,a,b为实数.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+3,求a,b的值;
(Ⅱ)若|f′(x)|< 对x∈[2,3]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点.

(1)求椭圆的方程;

(2)直线与椭圆交于两点,点位于第一象限,是椭圆上位于直线两侧的动点.

(i)若直线的斜率为,求四边形面积的最大值;

(ii)当点运动时,满足,问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当为何值时,轴为曲线的切线;

(2)用表示中的最小值,设函数,讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴非负半轴上,半径为2的圆C与直线相切.

(1)求圆C的方程;

(2)设不过原点O的直线l与圆O:x2+y2=4相交于不同的两点A,B.①求△OAB的面积的最大值;②在圆C上,是否存在点M(m,n),使得直线l的方程为mx+ny=1,且此时△OAB的面积恰好取到①中的最大值?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,交A、B、C所对的边分别为a,b,c,且c=acosB+bsinA
(Ⅰ)求A;
(Ⅱ)若a=2 ,求△ABC的面积的最值.

查看答案和解析>>

同步练习册答案