分析 (1)取AB的中点E,连结DE,推导出BE⊥DE,AB⊥SE,由此能证明AB⊥SD.
(2)分别以DE,DC<DF所在直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角A-SB-C的正弦值.
解答 证明:(1)取AB的中点E,连结DE,则四边形BCDE为矩形,∴BE⊥DE,
∵△SAB为等边三角形,∴AB⊥SE,
∵SE∩DE=E,
∴AB⊥平面SED,SD?平面SED,
∴AB⊥SD.
解:(2)由(1)知DE⊥DC,过D作DF⊥平面ABCD,则DE,DC,DF两两垂直,
分别以DE,DC<DF所在直线为x轴,y轴,z轴,建立空间直角坐标系,
则D(0,0,0),A(2,-1,0),B(2,1,0),C(0,1,0),
∵SD=1,DE=2,SE=$\sqrt{3}$,
∴SD⊥SE,∴SD⊥平面SAB,
∴S($\frac{1}{2},0,\frac{\sqrt{3}}{2}$),$\overrightarrow{DS}$=($\frac{1}{2},0,\frac{\sqrt{3}}{2}$),
设平面SBC的法向量$\overrightarrow{n}$=(x,y,z),
∵$\overrightarrow{SC}$=(-$\frac{1}{2}$,1,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=(-2,0,0),
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{SC}=-2x=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-\frac{1}{2}x+y-\frac{\sqrt{3}}{2}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(0,$\frac{\sqrt{3}}{2}$,1),
设二面角A-SB-C的平面角为θ,
则cosθ=$\frac{|\overrightarrow{DS}•\overrightarrow{n}|}{|\overrightarrow{DS}|•|\overrightarrow{n}|}$=$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{7}}{2}}$=$\frac{\sqrt{21}}{7}$,
∴sinθ=$\sqrt{1-(\frac{\sqrt{21}}{7})^{2}}$=$\frac{2\sqrt{7}}{7}$.
∴二面角A-SB-C的正弦值为$\frac{2\sqrt{7}}{7}$.
点评 本题考查异面直线垂直的证明,考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{10}{3}$ | B. | 4 | C. | $\frac{20}{3}$ | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [0,+∞) | B. | (-∞,0] | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{9}{4}$,+∞) | B. | [2,+∞) | C. | (-∞,$\frac{9}{4}$] | D. | (-∞,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3,$\frac{4}{3}$ | B. | 3,$\frac{3}{2}$ | C. | 4,$\frac{4}{3}$ | D. | 4,$\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com