精英家教网 > 高中数学 > 题目详情
14.如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,AB=BC=2,CD=SD=1,侧面SAB为等边三角形.
(1)证明:AB⊥SD;
(2)求二面角A-SB-C的正弦值.

分析 (1)取AB的中点E,连结DE,推导出BE⊥DE,AB⊥SE,由此能证明AB⊥SD.
(2)分别以DE,DC<DF所在直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角A-SB-C的正弦值.

解答 证明:(1)取AB的中点E,连结DE,则四边形BCDE为矩形,∴BE⊥DE,
∵△SAB为等边三角形,∴AB⊥SE,
∵SE∩DE=E,
∴AB⊥平面SED,SD?平面SED,
∴AB⊥SD.
解:(2)由(1)知DE⊥DC,过D作DF⊥平面ABCD,则DE,DC,DF两两垂直,
分别以DE,DC<DF所在直线为x轴,y轴,z轴,建立空间直角坐标系,
则D(0,0,0),A(2,-1,0),B(2,1,0),C(0,1,0),
∵SD=1,DE=2,SE=$\sqrt{3}$,
∴SD⊥SE,∴SD⊥平面SAB,
∴S($\frac{1}{2},0,\frac{\sqrt{3}}{2}$),$\overrightarrow{DS}$=($\frac{1}{2},0,\frac{\sqrt{3}}{2}$),
设平面SBC的法向量$\overrightarrow{n}$=(x,y,z),
∵$\overrightarrow{SC}$=(-$\frac{1}{2}$,1,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=(-2,0,0),
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{SC}=-2x=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-\frac{1}{2}x+y-\frac{\sqrt{3}}{2}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(0,$\frac{\sqrt{3}}{2}$,1),
设二面角A-SB-C的平面角为θ,
则cosθ=$\frac{|\overrightarrow{DS}•\overrightarrow{n}|}{|\overrightarrow{DS}|•|\overrightarrow{n}|}$=$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{7}}{2}}$=$\frac{\sqrt{21}}{7}$,
∴sinθ=$\sqrt{1-(\frac{\sqrt{21}}{7})^{2}}$=$\frac{2\sqrt{7}}{7}$.
∴二面角A-SB-C的正弦值为$\frac{2\sqrt{7}}{7}$.

点评 本题考查异面直线垂直的证明,考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,且SE=2EB.
(1)证明:DE∥平面SBC;
(2)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.△ABC为等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分别是边AC和AB的中点,现将△ADE沿DE折起,使面ADE⊥面DEBC,H、F分别是边AD和BE的中点,平面BCH与AE、AF分别交于I、G两点.
(Ⅰ)求证:IH∥BC;
(Ⅱ)求二面角A-GI-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{|{2}^{x}-b|,x≤1}\\{\frac{3}{x-1},x>1}\end{array}\right.$,若f(f(7))=$\sqrt{2}$,则实数b的值为0或2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则此几何体的体积是(  )
A.$\frac{10}{3}$B.4C.$\frac{20}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=2lnx-ax在区间[2,+∞)上单调递增,则实数a的取值范围是(  )
A.[0,+∞)B.(-∞,0]C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=lnx+$\frac{2a}{x+1}$-a(a∈R)在[$\frac{1}{2}$,+∞)上单调递增,则a的取值范围是(  )
A.[$\frac{9}{4}$,+∞)B.[2,+∞)C.(-∞,$\frac{9}{4}$]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.有一排标号为A、B、C、D、E、F的6个座位,请2个家庭共6人入座,要求每个家庭的任何两个人不坐在一起,则不同的入座方法的总数为72.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是$\frac{1}{3}$,那么另一组数据2x1-1,2x2-1,2x3-1,2x4-1,2x5-1的平均数,方差分别是(  )
A.3,$\frac{4}{3}$B.3,$\frac{3}{2}$C.4,$\frac{4}{3}$D.4,$\frac{3}{2}$

查看答案和解析>>

同步练习册答案