精英家教网 > 高中数学 > 题目详情

【题目】某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在岁的问卷中随机抽取了份, 统计结果如下面的图表所示.

(1)分别求出的值;

(2)从年龄在答对全卷的人中随机抽取人授予“环保之星”,求年龄在的人中至少有人被授予“环保之星”的概率.

【答案】(1) (2)

【解析】试题分析:(1)根据频率直方分布图通过概率的和为,求出所需频率,根据频率与频数的故选可求得求出的值;(2)年龄在中答对全卷的人记为,年龄在中答对全卷的人记为分别列举出所有的基本事件根据古典概型概率公式概率公式计算即可.

试题解析:(1)解:

(2)解:年龄在之间答对全卷的有人分别为

年龄在之间答对全卷的有人分别为

事件A:年龄在的人中至少有人被授予“环保之星基本事件为 15

其中事件A:包括 9

答:年龄在的人中至少有人被授予“环保之星的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过20万元时,按销售利润的20%进行奖励;当销售利润超过20万元时,若超出部分为A万元,则超出部分按2log5(A+2)进行奖励,没超出部分仍按销售利润的20%进行奖励.记奖金总额为y(单位:万元),销售利润为x(单位:万元).
(1)写出该公司激励销售人员奖励方案的函数表达式;
(2)如果业务员老张获得8万元的奖励,那么他的销售利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车的出现方便了人们的出行,深受市民的喜爱.为调查某校大学生对共享单车的使用情况,从该校8000名学生随机抽取了100位同学进行调查,得到这100名同学每周使用共享单车的时间(单位:小时)频率分布直方图.

(1)已知该校大一学生有2400人,求抽取的100名学生中大一学生人数;

(2)根据频率分布直方图求该校大学生每周使用共享单车的平均时间.

(3)从抽取的100个样本中,用分层抽样的方法抽取使用共享单车时间超过6小时同学5人,再从这5人中任选2人,求这2人使用共享单车时间都不超过8小时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个“乱点鸳鸯谱”节目:每次邀请四对青年夫妻,先由每人随机抽签获得顺序展示才艺,再由观众通过投票的方式实施男女配对(观众不知道他们的真实配对情况).

(Ⅰ)求正确配对家庭数的期望;

(Ⅱ)设有对夫妻,记他们完全错位的配对种类总数为.

①求

②推导 所满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若关于的不等式上恒成立,求的取值范围;

(Ⅱ)设函数,在(Ⅰ)的条件下,试判断上是否存在极值.若存在,判断极值的正负;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中为自然对数的底数.

(Ⅰ)设(其中的导函数),判断上的单调性;

(Ⅱ)若无零点,试确定正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kx(k≠0),且满足f(x+1)f(x)=x2+x,
(1)求函数f(x)的解析式;
(2)若函数f(x)为R上的增函数,h(x)= (f(x)≠1),问是否存在实数m使得h(x)的定义域和值域都为[m,m+1]?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,每个侧面均为正方形, 为底边的中点, 为侧棱上的点,且满足平面.

(1)求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量(单位:千克)与该地当日最低气温(单位: )的数据,如下表:

2

5

8

9

11

12

10

8

8

7

1)求出的回归方程

2)判断之间是正相关还是负相关;若该地1月份某天的最低气温为6,请用所求回归方程预测该店当日的营业额.

: 回归方程 ,

查看答案和解析>>

同步练习册答案