精英家教网 > 高中数学 > 题目详情

已知函数y=数学公式sinωx•cosωx+cos2ωx(ω>0)的周期为数学公式
(1)求ω的值;
(2)当0≤x≤数学公式时,求函数的最大值和最小值以及相应的x的值.

解:(1)函数f(x)=sinωx•cosωx+cos2ωx==sin(ωx+ )-
由f(x)的周期 T==
得ω=2.
(2)由(1)可知f(x)=sin(4x+ )-∵0≤x≤,∴≤4x+,∴0≤sin(4x+ )-
当x=时,y有最小值为0,当x=时函数有最大值为
分析:(1)利用二倍角公式以及两角和的正弦函数化简函数为一个角的一个三角函数的形式,通过周期求出ω的值;
(2)根据x的范围,确定4x+,求出y的范围,即可得到函数的最值,以及x 的值.
点评:本题是中档题,考查三角函数的化简二倍角公式的应用,两角和的正弦函数的应用,三角函数在闭区间最值的求法,考查计算能力.常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=|sin(2x-
π
6
)|,则以下说法正确的是(  )
A、周期为
π
4
B、函数图象的一条对称轴是直线x=
π
3
C、函数在[
3
6
]上为减函数
D、函数是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin(ωx+φ)(ω>0,0<φ<
π2
),且此函数的图象如图所示,则点(ω,φ)的坐标是
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数y=sinωx(ω>0)的图象如图所示,把y=sinωx的图象所有点向右平移
3
个单位后,再把所得函数图象上所有点得横坐标变为原来的
1
2
倍(纵坐标不变),得到函数y=f(x)的图象,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin(ωx+1)的最小正周期是
π2
,则正数ω=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin(2x-
π4
)

(1)试用五点法作函数在一个周期上的图象;
(2)根据图象直接写出函数的周期和单调递增区间.

查看答案和解析>>

同步练习册答案