【题目】无穷数列满足:为正整数,且对任意正整数,为前项、、、中等于的项的个数.
(1)若,求和的值;
(2)已知命题 存在正整数,使得,判断命题的真假并说明理由;
(3)若对任意正整数,都有恒成立,求的值.
【答案】(1),;(2)真命题,证明见解析;(3).
【解析】
(1)根据题意直接写出、、的值,可得出结果;
(2)分和两种情况讨论,找出使得等式成立的正整数,可得知命题为真命题;
(3)先证明出“”是“存在,当时,恒有成立”的充要条件,由此可得出,然后利用定义得出,由此可得出的值.
(1)根据题意知,对任意正整数,为前项、、、中等于的项的个数,
因此,,,;
(2)真命题,证明如下:
①当时,则,,,此时,当时,;
②当时,设,则,,,
此时,当时,.
综上所述,命题为真命题;
(3)先证明:“”是“存在,当时,恒有成立”的充要条件.
假设存在,使得“存在,当时,恒有成立”.
则数列的前项为,,
,,
,,
后面的项顺次为,
,
,
,
故对任意的,
,
对任意的,取,其中表示不超过的最大整数,则,
令,则,此时,
有,这与矛盾,
故若存在,当时,恒有成立,必有;从而得证.
另外:当时,数列为,
故,则.
科目:高中数学 来源: 题型:
【题目】某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量为x(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为()
A. 90万元B. 120万元
C. 120.25万元D. 60万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,其焦距为,若,则称椭圆为“黄金椭圆”.黄金椭圆有如下性质:“黄金椭圆”的左、右焦点分别是,,以,,,为顶点的菱形的内切圆过焦点,.
(1)类比“黄金椭圆”的定义,试写出“黄金双曲线”的定义;
(2)类比“黄金椭圆”的性质,试写出“黄金双曲线”的性质,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次测试中,卷面满分为分,考生得分为整数,规定分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:
分数段 | |||||||
午休考生人数 | 29 | 34 | 37 | 29 | 23 | 18 | 10 |
不午休考生人数 | 20 | 52 | 68 | 30 | 15 | 12 | 3 |
(1)根据上述表格完成下列列联表:
及格人数 | 不及格人数 | 合计 | |
午休 | |||
不午休 | |||
合计 |
(2)判断“能否在犯错误的概率不超过的前提下认为成绩及格与午休有关”?
0.10 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(参考公式:,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市国庆节天假期的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这天的认购量与成交量作出如下判断:①日成交量的中位数是;②日成交量超过日平均成交量的有天;③认购量与日期正相关;④月日认购量的增量大于月日成交量的增量.上述判断中错误的个数为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表中的数据是一次阶段性考试某班的数学、物理原始成绩:
用这44人的两科成绩制作如下散点图:
学号为22号的同学由于严重感冒导致物理考试发挥失常,学号为31号的同学因故未能参加物理学科的考试,为了使分析结果更客观准确,老师将两同学的成绩(对应于图中两点)剔除后,用剩下的42个同学的数据作分析,计算得到下列统计指标:
数学学科平均分为110.5,标准差为18.36,物理学科的平均分为74,标准差为11.18,数学成绩
与物理成绩的相关系数为,回归直线(如图所示)的方程为.
(1)若不剔除两同学的数据,用全部44人的成绩作回归分析,设数学成绩与物理成绩的相关系数为,回归直线为,试分析与的大小关系,并在图中画出回归直线的大致位置;
(2)如果同学参加了这次物理考试,估计同学的物理分数(精确到个位);
(3)就这次考试而言,学号为16号的同学数学与物理哪个学科成绩要好一些?(通常为了比较某个学生不同学科的成绩水平,可按公式统一化成标准分再进行比较,其中为学科原始分,为学科平均分,为学科标准差).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=6cos2 sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ ),求f(x0+1)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是 .
B.(几何证明选做题)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DFDB= .
C.(坐标系与参数方程)直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com