精英家教网 > 高中数学 > 题目详情
若θ∈[
π
2
,π
],sinθ+cosθ=-
7
13
,则sinθ等于(  )
A、
3
5
B、
4
5
C、
5
13
D、
12
13
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:已知等式两边平方,利用同角三角函数间基本关系化简求出sinθcosθ的值,再利用完全平方公式及同角三角函数间基本关系化简求出sinθ-cosθ的值,即可确定出sinθ的值.
解答: 解:把sinθ+cosθ=-
7
13
①,两边平方得:(sinθ+cosθ)2=1+2sinθcosθ=
49
169
,即2sinθcosθ=-
120
169
<0,
∵θ∈[
π
2
,π
],
∴sinθ>0,cosθ<0,即sinθ-cosθ>0,
∴(sinθ-cosθ)2=1-2sinθcosθ=
289
169
,即sinθ-cosθ=
17
13
②,
联立①②解得:sinθ=
5
13
,cosθ=-
12
13

故选:C.
点评:此题考查了同角三角函数基本关系的运用,以及完全平方公式的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是R上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=x2-x+1,则f(-2014)+f(2015)的值为(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=7,a8=-5.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=xα的图象过点(2,4),那么这个幂函数的解析式是(  )
A、y=x
1
2
B、y=x-
1
2
C、y=x-2
D、y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x-2≥0},集合B={x|x<3}.
(Ⅰ)求A∩B;
(Ⅱ)求(∁RA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为R,集合A={x|x2-2x>0},B={x|1<x<3},则A∩B=
 
;A∪B=
 
;CRA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x||x-1|<2},B={x|2x+1≥4},则A∩B=(  )
A、[0,2]
B、(1,3)
C、[1,3)
D、(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知双曲线上两点P1,P2的坐标分别为(3,-4
2
),(
9
4
,5)
,求双曲线的标准方程
(2)求一条渐近线方程是3x+4y=0,一个焦点是(4,0)的双曲线标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线的一个焦点,存在直线l交双曲线于A,B两点,O为中心,OA⊥OB,则双曲线离心率的范围是
 

查看答案和解析>>

同步练习册答案