精英家教网 > 高中数学 > 题目详情

【题目】ABC中,角A,B,C的对边分别为a,b,c,且2bcosC+c=2a.

(Ⅰ)求角B的大小;

(Ⅱ)若,求的值.

【答案】(1)(2)

【解析】试题分析:(1)由于2bcosC+c=2a,是关于边的一次齐次式,所以用正弦定理把边化为角,可得到。(2)由(1)中,可知A,B角己知,同时根据三角形内角为,也可以sinC,所以,可解。

试题解析:(Ⅰ)在ABC中,∵2bcosC+c=2a,

由正弦定理,得2sinBcosC+sinC=2sinA,

∵A+B+C=π,

∴sinA=sin(B+C)=sinBcosC+cosBsinC,…

∴2sinBcosC+sinC=2(sinBcosC+cosBsinC),

∴sinC=2cosBsinC,

∵0<C<π,∴sinC≠0,

∵0<B<π,∴

(Ⅱ)∵三角形ABC中,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:

(1)根据频率分布直方图计算该种蔬果日需求量的平均数(同一组中的数据用该组区间中点值代表);

(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为公斤,利润为元.求关于的函数关系式,并结合频率分布直方图估计利润不小于1750元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,的三条内线段交于点、用红、蓝两种颜色对的三条边线和三条内线段染色,使同色的三线不交于一点.证明:在图中所有的三角形中,至少存在两个同色三角形,且它的各边或延长线被另一线截得的两线段之比的和大于3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的左、右焦点分别为,且点与椭圆C的上顶点构成边长为2的等边三角形.

1)求椭圆C的方程;

2)已知直线l与椭圆C相切于点P,且分别与直线和直线相交于点.试判断是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足表示不超过的最大整数( )

A. 2018 B. 2019 C. 2020 D. 2021

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是奇函数,是偶函数,且其中.

1)求的表达式,并求函数的值域

2)若关于的方程在区间内恰有两个不等实根,求常数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的单调区间;

2)判断上的零点的个数,并说明理由.(提示:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆上有21个点.证明:以这些点为端点组成的所有弧中,不超过120°的弧不少于100.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知函数(a为常数).

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案