精英家教网 > 高中数学 > 题目详情

【题目】已知x>0,y>0,且2x+8y-xy=0,求:
(1)xy的最小值;
(2)x+ y的最小值.

【答案】
(1)解:由2x+8y-xy=0,因为x>0,y>0,,所以xy≥64,当且仅当x=16,y=4时,等号成立,

所以xy的最小值为64


(2)解:由2x+8y-xy=0,则x+y=( )(x+y)=10+ ≥10+2 =18,

当且仅当x=12,y=6时,等号成立,

所以x+y的最小值为18


【解析】(1)利用已知根据基本不等式即可求出最小值。(2)整理已知的函数式借助已知的代数式,转化成基本不等式的形式进而求出最小值。
【考点精析】掌握基本不等式在最值问题中的应用是解答本题的根本,需要知道用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】综合题。
(1)已知x< ,求函数y=4x﹣2+ 的最大值;
(2)已知x>0,y>0且 =1,求x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(-1,1),B(1,1),C(2, +1),
(1)求直线AB和AC的斜率.
(2)若点D在线段AB(包括端点)上移动时,求直线CD的斜率的变化范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,a1=2,前n项和为Sn , 若数列{an+1}也是等比数列,则Sn等于( ).
A.2n+1-2
B.3n
C.2n
D.3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}及等差数列{bn},若a1=3, (n≥2),a1=b2 , 2a3+a2=b4
(1)证明数列{an﹣2}为等比数列;
(2)求数列{an}及数列{bn}的通项公式;
(3)设数列{anbn}的前n项和为Tn , 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的离心率为 ,右焦点为( ,0)
(1)求椭圆C的方程;
(2)若过原点 作两条互相垂直的射线,与椭圆交于A,B两点,求证:点O到直线AB的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是等差数列, 是各项都为正数的等比数列,且
(1)求数列 的通项公式;
(2)设数列 的前 项和为 试比较 与6的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体 中, 分别为 的中点.

(1)求证:平面 ⊥平面
(2)当点 上运动时,是否都有 平面 ,证明你的结论;
(3)若 的中点,试判断 与平面 是否垂直?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为数列{an}的前n项和,a1=1,Sn=2Sn1+n﹣2(n≥2),则a2017等于( )
A.22016﹣1
B.22016+1
C.22017﹣1
D.22017+1

查看答案和解析>>

同步练习册答案