A. | $\frac{x^2}{4}-\frac{y^2}{12}=1(x≥2)$ | B. | $\frac{x^2}{4}-\frac{y^2}{12}=1(x≤2)$ | C. | $\frac{x^2}{4}-\frac{y^2}{12}=1$ | D. | $\frac{y^2}{4}-\frac{x^2}{12}=1$ |
分析 动圆圆心为P,半径为r,已知圆圆心为N,半径为4 由题意知:PM=r,PN=r+4,所以|PN-PM|=4,即动点P到两定点的距离之差为常数4,P在以M、C为焦点的双曲线上,且2a=4,2c=8,从而可得动圆圆心P的轨迹方程.
解答 解:动圆圆心为P,半径为r,已知圆圆心为N,半径为4 由题意知:PM=r,PN=r+4,
所以|PN-PM|=4,
即动点P到两定点的距离之差为常数4,P在以M、C为焦点的双曲线上,且2a=4,2c=8,
∴b=2$\sqrt{3}$,
∴动圆圆心M的轨迹方程为:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$.
故选:C.
点评 本题考查圆与圆的位置关系,考查双曲线的定义,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{2}}}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{{\sqrt{3}}}{5}$ | D. | $\frac{{\sqrt{15}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=$\frac{{x}^{2}-4}{x-2}$与y=x+2 | B. | y=$\sqrt{{x}^{2}-3}$与y=x-3 | ||
C. | y=2x-1(x≥0)与s=2t-1(t≥0) | D. | y=x0与y=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com