精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的方程为,P在椭圆上,椭圆的左顶点为A,左、右焦点分别为的面积是的面积的倍.

(1)求椭圆C的方程;(2)直线与椭圆C交于M,N,连接并延长交椭圆C于D,E,连接DE,指出之间的关系,并说明理由.

【答案】(1) ; (2).

【解析】

(1)由已知面积倍数关系,得,结合椭圆a,b,c的关系,得b=c,根据点在椭圆上可得求得a,b的值,即可得椭圆方程;

(2)A(x0,y0),则B(-x0,-y0),设D(x1,y1),E(x2,y2),可得,,进而求得=3.

(1)由 的面积是的面积的 倍,可得,即

,所以

在椭圆上,可得 ,所以,可得

所以椭圆的方程为

(2)设 ,则

故直线MD的方程为

消去整理得

,代入上式化简得

,则,所以

又直线NE的方程为,同理可得

所以

,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣x2(1≤x≤2)与g(x)=x+2的图象上存在关于x轴对称的点,则实数a的取值范围是(
A.[﹣ ,+∞)
B.[﹣ ,0]
C.[﹣2,0]
D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是秦九韶算法的一个程序框图,则输出的S为(
A.a1+x0(a3+x0(a0+a2x0))的值
B.a3+x0(a2+x0(a1+a0x0))的值
C.a0+x0(a1+x0(a2+a3x0))的值
D.a2+x0(a0+x0(a3+a1x0))的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(1)求证:AD⊥PB;
(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列三种说法:

①命题p:x0∈R,tan x0=1,命题q:x∈R,x2-x+1>0,则命题“p∧()”是假命题.

②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=-3.

③命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”.

其中所有正确说法的序号为________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,若输入a的值为 ,则输出的k值是(

A.9
B.10
C.11
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:

测试指标

机床甲

8

12

40

32

8

机床乙

7

18

40

29

6

(1)试分别估计甲机床、乙机床生产的零件为优品的概率;

(2)甲机床生产一件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元;假设甲机床某天生产50件零件,请估计甲机床该天的日利润(单位:元);

(3)从甲、乙机床生产的零件指标在内的零件中,采用分层抽样的方法抽取5件,从这5件中任选2件进行质量分析,求这2件都是乙机床生产的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的极大值点,则a的取值范围为(
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

同步练习册答案