精英家教网 > 高中数学 > 题目详情

【题目】已知圆的方程为,点,点M为圆上的任意一点,线段的垂直平分线与线段相交于点N.

(1)求点N的轨迹C的方程.

(2)已知点,过点A且斜率为k的直线交轨迹C于两点,以为邻边作平行四边形,是否存在常数k,使得点B在轨迹C上,若存在,求k的值;若不存在,说明理由.

【答案】(1)(2)见解析

【解析】

(1)由椭圆的定义,知点的轨迹是以为焦点的椭圆,进而求得N的轨迹方程;(2)设直线,与椭圆联立,得韦达定理,以为邻边作平行四边形的顶点在椭圆上,转化为坐标化后B点在椭圆上,得k的方程求解即可

(1)

>

知点的轨迹是以为焦点的椭圆,则a=,

(2)设直线,与椭圆联立

消去,得

代入椭圆方程:

满足

存在常数,使得平行四边形的顶点在椭圆上

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A在直线2x-3y+5=0上移动,P为连接M(4,-3)和点A的线段的中点,则点P的轨迹方程为

A. 2x-3y-6=0 B. 2x-3y+2=0 C. 2x-3y+11=0 D. 2x+3y-6=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[4050),[5060),[6070),[90100]分成6组,制成如图所示频率分布直方图.

1)求图中x的值;

2)求这组数据的中位数;

3)现从被调查的问卷满意度评分值在[6080)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)解不等式

(2)若函数在区间上存在零点,求实数的取值范围;

3)若函数其中为奇函数, 为偶函数,若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)

已知函数a为实数).

(1)当时,求函数的图像在处的切线方程;

(2)求在区间上的最小值;

(3)若存在两个不等实数,使方程成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现将甲、乙两个学生在高二的6次数学测试的成绩(百分制)制成如图所示的茎叶图,进人高三后,由于改进了学习方法,甲、乙这两个学生的考试数学成绩预计同时有了大的提升.若甲(乙)的高二任意一次考试成绩为,则甲(乙)的高三对应的考试成绩预计为(若>100.则取为100).若已知甲、乙两个学生的高二6次考试成绩分别都是由低到高进步的,定义为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值.

(I)试预测:在将要进行的高三6次测试中,甲、乙两个学生的平均成绩分别为多少?(计算结果四舍五入,取整数值)

(Ⅱ)求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.若使租赁公司的月收益最大,每辆车的月租金应该定为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆 的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)已知为平面内的两个定点,过点的直线与椭圆交于 两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 平面 为线段上一点, 的中点.

(1)证明:

(2)求四面体的体积.

查看答案和解析>>

同步练习册答案