精英家教网 > 高中数学 > 题目详情
15.命题p:?x∈R,函数f(x)=2cos2x+$\sqrt{3}$sin2x≤3,则(  )
A.p是假命题;?p:?x0∈R,f(x0)=2cos2x0+$\sqrt{3}$sin2x0≤3
B.p是假命题;?p:?x0∈R,f(x0)=2cos2x0+$\sqrt{3}$sin2x0>3
C.p是真命题;?p:?x0∈R,f(x0)=2cos2x0+$\sqrt{3}$sin2x0≤3
D.p是真命题;?p:?x0∈R,f(x0)=2cos2x0+$\sqrt{3}$sin2x0>3

分析 判断马特的真假,然后利用全称命题的否定是特称命题,写出结果即可.

解答 解:$f(x)=2{cos^2}x+\sqrt{3}sin2x=cos2x+\sqrt{3}sin2x+1=2sin(2x+\frac{π}{6})+1≤3$,故p是真命题;
命题的否定$?p:?{x_0}∈R,f({x_0})=2{cos^2}{x_0}+\sqrt{3}sin2{x_0}>3$.
故选:D.

点评 本题考查命题的真假的判断,命题的否定形式,考查基本知识的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x2+(1-2k)x在(-∞,-1)上是减函数,且在(-1,+∞)上是增函数,则函数y=kx+3在R上是减函数.(填“增”或“减”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{1-(x-1)^{2}},(0≤x<2)}\\{f(x-2),(x≥2)}\end{array}\right.$,若函数F(x)=f(x)-kx(k>0),有且仅有四个零点,则实数k的取值范围为(  )
A.($\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}$)B.($\frac{\sqrt{2}}{4},\frac{\sqrt{2}}{2}$)C.($\frac{\sqrt{6}}{12},\frac{\sqrt{2}}{4}$)D.($\frac{\sqrt{3}}{13},\frac{\sqrt{6}}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若a2+1=2b2,a、b∈R,求函数y=|a-2b|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.判断下列各组中的两个集合间的关系.
(1)P={x|x=2n,n∈Z},Q={x|x=4n,n∈Z};
(2)P={x|x=2n-1,n∈N*},Q={x|x=2n+1,n∈N*};
(3)P={x|x2-x=0},Q={x|x=$\frac{1+(-1)^{n}}{2}$,n∈Z};
(4)已知集合A={x|x=$\frac{1}{9}$(2k+1),k∈Z},B={x|x=$\frac{4}{9}$k±$\frac{1}{9}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,值域为(0,+∞)的是(  )
A.y=x2-x+1B.($\frac{1}{3}$)1-xC.3${\;}^{\frac{1}{2-x}}$+1D.y=|log2x2|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在锐角△ABC中,tanA=t+1,tanB=t-1,则实数t的取值范围是(  )
A.($\sqrt{2}$,+∞)B.(1,+∞)C.(1,$\sqrt{2}$)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出以下四个命题:
①正态曲线当μ一定时曲线形状由σ确定,σ越小曲线越“瘦高”表示总体分布越集中;
②过点(-1,2)且在x轴和y轴上的截距相等的直线方程是x+y-1=0;
③函数f(x)=2x+2x-3在定义域内有且只有一个零点;
④回归方程拟合效果可用R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$刻画,R2越接近1表示回归效果越差;
其中正确命题的序号为①③.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+2ax-3.
(1)求实数a的取值范围,使得y=f(x)在区间[-4,6]上是单调函数;
(2)当x∈[-4,6]时,求f(x)的最小值g(a);
(3)画出分段函数g(x)图象,求g(x)的最大值.

查看答案和解析>>

同步练习册答案