【题目】已知函数.
(1)若且,求的单调区间;
(2)若在处取得最大值,求实数的取值范围.
【答案】(1)在单调递增,在单调递减;(2).
【解析】
当时,求得函数的导数,利用导数的符号,即可求解函数的单调区间;
求得函数导数,构造新函数,求得的导数,分,,,四种情况讨论,求得的单调性与最值,得出单调性,即可求解的极值,进而得到的范围.
当时,,
则,
,
令,
,
∴在单调递增,在单调递减.
由已知得,
则,
记,
则,,
①当,时,
,函数单调递增,
所以当时,,
当时,,
所以在处取得极小值也是最小值,不满足题意.
②当时,时,
,函数单调递增.
可得当时,,
当时,,
所以在处取得极小值也是最小值,不满足题意.
③当时,当时,
,函数单调递增,
时,,
在内单调递减,
所以当时,,
单调递减,不合题意.
④当时,即,当时,
,单调递减,
,当时,
,单调递减,,
所以在处取得极大值也是最大值,符合题意.
综上可知,实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)写出曲线的极坐标方程和直线的直角坐标方程;
(2)若射线与曲线交于两点,与直线交于点,射线与曲线交于两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周髀算经》是中国最古老的天文学和数学著作,书中提到:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则立夏的日影子长为:( )
A.15.5尺B.12.5尺C.9.5尺D.6.5尺
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研课题组通过一款手机APP软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表
周跑量(km/周) | |||||||||
人数 | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答题卡上补全该市1000名跑步爱好者周跑量的频率分布直方图:
注:请先用铅笔画,确定后再用黑色水笔描黑
(2)根据以上图表数据计算得样本的平均数为,试求样本的中位数(保留一位小数),并用平均数、中位数等数字特征估计该市跑步爱好者周跑量的分布特点
(3)根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
类别 | 休闲跑者 | 核心跑者 | 精英跑者 |
装备价格(单位:元) | 2500 | 4000 | 4500 |
根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解疫情期间哈一中高三学生的心理需求,更好的开展高考前的心理健康教育工作,心理老师设计了两个问题,第一个问题是“你出生的月份是奇数吗?”;第二个问题是“你是否需要心理疏导?”.让被调查者在保密的情况下掷一个均匀的骰子,其他人不知道掷骰子的结果,要求:当出现1点或2点时,回答第一个问题;否则回答第二个问题,由于其他人不知道他回答的是哪一个问题,因此,当他回答“是”时,你也无法知道他是否有心理问题,这种调查既保护了他的隐私,也能反映真实情况,可以从调查结果中得到需要的估计,若调查的900名学生中有156人回答“是”,由此可估计我校高三需要心理疏导的学生所占的比例约为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com