精英家教网 > 高中数学 > 题目详情

【题目】如图, 是圆的直径,点是圆上异于的点,直线度平面 分别是的中点.

(Ⅰ)设平面与平面的交线为,求直线与平面所成角的余弦值;

(Ⅱ)设(Ⅰ)中的直线与圆的另一个交点为点,且满足 ,当二面角的余弦值为时,求的值.

【答案】(1)见解析(2)

【解析】试题分析:(1)求线面角,一般利用空间向量进行求解,先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求法向量夹角,最后根据线面角与向量夹角之间互余关系求解,(2)研究二面角,一般利用空间向量进行列式求解参数,先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求法向量夹角,最后根据二面角与向量夹角之间关系列式

试题解析:(Ⅰ)∵平面,∴

又∵,∴平面

分别是 的中点,所以

又∵平面 平面

又∵平面,平面平面

∴直线直线

∴直线与平面所成角为直角,

(Ⅱ)设,则,如图建立平面直角坐标系. 

的一个法向量为 ,可求出面的一个法向量

可求出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若要得到函数y=sin(2x﹣ )的图象,可以把函数y=sin2x的图象(
A.向右平移 个单位
B.向左平移 个单位
C.向右平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,离心率为,设直线的斜率是,且与椭圆交于 两点.

Ⅰ)求椭圆的标准方程.

Ⅱ)若直线轴上的截距是,求实数的取值范围.

Ⅲ)以为底作等腰三角形,顶点为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点在直线上,且抛物线截直线所得的弦的长为

Ⅰ)求抛物线的方程和的值.

Ⅱ)以弦为底边,以轴上点为顶点的三角形面积为,求点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公比为负值的等比数列{an}中,a1a5=4,a4=﹣1.
(1)求数列{an}的通项公式;
(2)设bn= + +…+ ,求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式ax2﹣2x+1>0对x∈( ,+∞)恒成立,则a的取值范围为(
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记Sn为正项等比数列{an}的前n项和,若 ﹣7 ﹣8=0,且正整数m,n满足a1ama2n=2 ,则 + 的最小值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知圆的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,取相同单位长度(其中 ),若倾斜角为且经过坐标原点的直线与圆相交于点点不是原点).

(1)求点的极坐标;

(2)设直线过线段的中点,且直线交圆两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,2), =(2,﹣2).
(1)设 =4 + ,求
(2)若 + 垂直,求λ的值;
(3)求向量 方向上的投影.

查看答案和解析>>

同步练习册答案