已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,且与y轴相切,过原点O作倾斜角为的直线n,交l于点A,交圆M于另一点B,且AO=BO=2
(1)求圆M和抛物线C的方程;
(2)若P为抛物线C上的动点,求的最小值;
(3)过l上的动点Q向圆M作切线,切点为S,T,判断直线ST是否恒过定点?若恒过定点,求该定点的坐标.
科目:高中数学 来源:2013年普通高等学校招生全国统一考试大纲卷理数 题型:013
已知抛物线C:y2=8x与点M(-2,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若·=0,则k=
A.
B.
C.
D.2
查看答案和解析>>
科目:高中数学 来源:河南省新郑二中分校2009届高三上学期模拟试卷(二)(数学理) 题型:044
已知抛物线C:y2=4x的焦点为F,过F作C的两条互相垂直的弦AB、CD,设AB、CD的中点分别为M、N.
(Ⅰ)证明直线MN必过定点,并求出这点的坐标;
(Ⅱ)分别以AB、CD为直径作圆,求两圆相交弦的中点H的轨迹方程.
查看答案和解析>>
科目:高中数学 来源:湖北省武汉市武昌区2012届高三5月调研考试数学理科试题 题型:044
如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.
(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;
(Ⅱ)假设直线PQ过点T(5,-2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数?如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山西省平遥县高三4月质检理科数学试卷(解析版) 题型:选择题
已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos∠AFB=( )
A. B. C.- D.-
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程;
(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求直线l的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com