精英家教网 > 高中数学 > 题目详情
已知数列{an}的通项公式an=2•3n-1,cn=an+(-1)nlnan.求数列{cn}的前n项和.
考点:数列的求和
专题:等差数列与等比数列
分析:先写出cn发现cn由一个等比数列、一个等差数列乘(-1)n的和构成,故可分组求和.
解答: 解:cn=an+(-1)nlnan
=2•3n-1+(-1)n[(n-1)ln3+ln2]
=2•3n-1+(-1)n(ln2-ln3)+(-1)nnln3
所以sn=2(1+3+…+3n-1)+[-1+1-1+1+…+(-1)n](ln2-ln3)+[-1+2-3+4-…+(-1)nn]ln3
所以当n为偶数时,sn=2×
1-3n
1-3
+
n
2
ln3=3n+
n
2
ln3-1

当n为奇数时,sn=2×
1-3n
1-3
-(ln2-ln3)+(
n-1
2
-n)ln3=3n-
n-1
2
ln3-ln2-1

综上所述sn=
3n+
n
2
ln3-1
n为偶数
3n-
n-1
2
ln3-ln2-1
n为奇数
点评:本题考查了等比数列的通项公式,以及数列求和的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,∠DAB=60°,PA=AD=2,M是PC上的一动点.
(1)求四棱锥P-ABCD的体积
(2)当M满足什么条件时,平面MBD⊥平面PCD.证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过M(
2
,0),N(0,1)两点.
(1)求椭圆C的标准方程;
(2)若P是该椭圆上的一个动点,F1,F2是椭圆C的两个焦点,求
PF1
PF2
的最大值;
(3)过点D(0,2)且斜率为k的直线l与椭圆交于不同的两点A、B,若点E(0,
11
4
),求证:对任意k2
3
2
AE
BE
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+2n(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}是等比数列,公比为q(q>0),且满足b2=S1,b4=a2+a3,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若P(x1,y1)在椭圆
x2
4
+
y2
3
=1上,直线BC:y-
4y1
x1+2
=
2-x1
y1
(x-2)恒过定点
 

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:|-x-1|+|-x+1|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线P的顶点在原点,焦点F在x轴的正半轴上,经过点H(4,0)作直线与抛物线P相交于A,B两点,设A(x1,y1),B(x2,y2),且y1y2=-16.
(1)求抛物线P的方程;
(2)是否存在常数a,当点M在抛物线P上运动时,直线x=a都与以MF为直径的圆相切?若存在,求出所有a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(2,0)作直线l与圆x2+y2=1交于A、B两点,则
PA
PB
等于定值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax+
b
x
(a,b∈R),下列命题:
①当a>0,b>0时,对函数f(x)图象上任意一点A,图象上存在唯一的点B,使得tan∠AOB=
1
a
(O是坐标原点);
②当ab≠0时,函数f(x)图象上任意一点的切线与直线y=ax及y轴围成的三角形面积是定值.
正确的是:
 

查看答案和解析>>

同步练习册答案