精英家教网 > 高中数学 > 题目详情
集合A是由形如m+
3
n(m∈Z,n∈Z)的数构成的,试判断
1
2-
3
是不是集合A中的元素?
分析:
1
2-
3
进行整理,若可化简成形如m+
3
n(m∈Z,n∈Z)的式子,则是集合A中的元素.
解答:解:∵
1
2-
3
=2+
3
=2+
3
×1,而2,1∈Z,
∴2+
3
∈A,即
1
2-
3
∈A.
点评:本题考查元素与集合关系的判断,解题的关键是正确理解题意,注意题意的要求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北京)设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
1 1 -0.8
0.1 -0.3 -1
(2)设数表A∈S(2,3)形如
1 1 c
a b -1
求K(A)的最大值;
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合,对于A∈S(m,n),记ri(A)为A的第i行各数之和(1≤i≤m),Cj(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值。
(1)如表A,求K(A)的值;
(2)设数表A∈(2,3),形如下表,求K(A)的最大值。
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。

查看答案和解析>>

科目:高中数学 来源:2012年北京市高考数学试卷(理科)(解析版) 题型:解答题

设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
11-0.8
0.1-0.3-1
(2)设数表A∈S(2,3)形如
11c
ab-1
求K(A)的最大值;
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

集合A是由形如m+
3
n(m∈Z,n∈Z)的数构成的,试判断
1
2-
3
是不是集合A中的元素?

查看答案和解析>>

同步练习册答案