É躯Êýf£¨x£©=asin2x+bcos2x£¬ÆäÖÐa£¬b¡ÊR£®ab¡Ù0£¬Èôf£¨x£©¡Ü|f£¨£©|¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬Ôò
¢Ùf£¨£©=0£»  ¢Ú|f£¨£©|£¼|f£¨£©|£»
¢Ûº¯Êýy=f£¨x£©¼È²»ÊÇÆ溯ÊýÒ²²»ÊÇżº¯Êý£»
¢Üº¯Êýy=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ£º[k¦Ð+£¬k¦Ð+]£¨k¡ÊZ£©£»
¢Ý¾­¹ýµã£¨a£¬b£©µÄËùÓÐÖ±Ïß¾ùÓ뺯Êýy=f£¨x£©µÄͼÏóÏཻ£®
ÒÔÉϽáÂÛÕýÈ·µÄÊÇ    £¨Ð´³öËùÓÐÕýÈ·½áÂ۵ıàºÅ£©£®
¡¾´ð°¸¡¿·ÖÎö£ºÓɸ¨Öú½Ç¹«Ê½£¬»¯¼òµÃf£¨x£©=sin£¨2x+¦È£©£¬½áºÏÒÑÖª²»µÈʽµÃf£¨£©ÊǺ¯ÊýµÄ×î´ó»ò×îСֵ£¬´Ó¶øµÃµ½
f£¨x£©=sin£¨2x++k¦Ð£©=±sin£¨2x+£©£®ÔÙ¸ù¾ÝÈý½Çº¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏóÓëÐÔÖÊ£¬¶Ô¸÷Ñ¡ÏîÖð¸ö¼ÓÒÔÅжϣ¬¿ÉµÃ¢Ù¢Û¢Ýͨ¹ýÖ¤Ã÷¿ÉµÃÆäÕýÈ·ÐÔ£¬¶ø¢Ú¢Ü´æÔÚ·´Àý˵Ã÷ËüÃDz»ÕýÈ·£®
½â´ð£º½â£ºf£¨x£©=asin2x+bcos2x=sin£¨2x+¦È£©£¬ÆäÖнǦÈÂú×ãcos¦È=£¬sin¦È=
¡ßf£¨x£©¡Ü|f£¨£©|¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬
¡àf£¨£©=»ò-£¬µÃ2×+¦È=+k¦Ð£¬k¡ÊZ
Òò´Ë¦È=+k¦Ð£¬k¡ÊZ£®f£¨x£©=sin£¨2x++k¦Ð£©=sin£¨2x+£©»ò-sin£¨2x+£©
¶ÔÓÚ¢Ù£¬ÒòΪsin£¨2×+£©=sin2¦Ð=0£¬ËùÒÔf£¨£©=±sin£¨2×+£©=0£¬¹Ê¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú£¬|f£¨£©|=|sin£¨2×+£©|=
¡ß|f£¨£©|=|sin£¨2×+£©|=sin£¼
¡à|f£¨£©|£¾|f£¨£©|£¬¹Ê¢Ú²»ÕýÈ·£»
¶ÔÓÚ¢Û£¬¸ù¾Ýº¯ÊýµÄ±í´ïʽ£¬µÃf£¨-x£©¡Ù±f£¨x£©£¬¹Êy=f£¨x£©¼È²»ÊÇÆ溯ÊýÒ²²»ÊÇżº¯Êý£¬¹Ê¢ÛÕýÈ·£»
¶ÔÓڢܣ¬ÒòΪº¯ÊýµÄ±í´ïʽf£¨x£©=sin£¨2x+£©»ò-sin£¨2x+£©£¬
±í´ïʽ²»È·¶¨£¬¹Ê[k¦Ð+£¬k¦Ð+]£¨k¡ÊZ£©²»Ò»¶¨ÊÇÔöÇø¼ä£¬¹Ê¢Ü²»ÕýÈ·£»
¶ÔÓڢݣ¬²ÉÓ÷´Ö¤·¨
Éè¾­¹ýµã£¨a£¬b£©µÄÒ»ÌõÖ±ÏßÓ뺯Êýy=f£¨x£©µÄͼÏó²»Ïཻ£¬Ôò´ËÖ±ÏßÓëxÖáƽÐÐ
·½³ÌΪy=b£¬ÇÒ|b|£¾£¬Æ½·½µÃb2£¾a2+b2ì¶Ü£¬¹Ê¼ÙÉè²»³ÉÁ¢
¡à¾­¹ýµã£¨a£¬b£©µÄËùÓÐÖ±Ïß¾ùÓ뺯Êýy=f£¨x£©µÄͼÏóÏཻ£®¹Ê¢ÝÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ý
µãÆÀ£º±¾Ìâ¸ø³ö·ûºÏÒÑÖªÌõ¼þµÄÈý½Çº¯Êý±í´ïʽ£¬½ÐÎÒÃÇÅжϼ¸¸öÑ¡ÏîµÄÕýÈ·ÐÔ£¬×ÅÖØ¿¼²éÁ˺¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏóÓëÐÔÖÊ¡¢Á½½ÇºÍÓë²îµÄÈý½Çº¯ÊýºÍ·´Ö¤·¨µÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬µ±x£¼0ʱf£¨x£©£¾1£¬ÇÒ¶ÔÈÎÒâµÄʵÊýx£¬y¡ÊR£¬ÓÐf£¨x+y£©=f£¨x£©f£¨y£©£®ÊýÁÐ{an}Âú×ãf£¨an+1£©=
1f(-2-an)
£¨n¡ÊN*£©
£¨¢ñ£©Çóf£¨0£©µÄÖµ£¬Åжϲ¢Ö¤Ã÷º¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£©Èç¹û´æÔÚt¡¢s¡ÊN*£¬s¡Ùt£¬Ê¹µÃµã£¨t£¬as£©¡¢£¨s£¬at£©¶¼ÔÚÖ±Ïßy=kx-1ÉÏ£¬ÊÔÅжÏÊÇ·ñ´æÔÚ×ÔÈ»ÊýM£¬µ±n£¾Mʱ£¬a n£¾f£¨0£©ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬µ±x£¼0ʱf£¨x£©£¾1£¬ÇÒ¶ÔÈÎÒâµÄʵÊýx£¬y¡ÊR£¬ÓÐf£¨x+y£©=f£¨x£©f£¨y£©£®ÊýÁÐ{an}Âú×ãf(an+1)=
1
f(-2-an)
(n¡ÊN*)
£®
£¨¢ñ£©Çóf£¨0£©µÄÖµ£¬Åжϲ¢Ö¤Ã÷º¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£©Èç¹û´æÔÚt¡¢s¡ÊN*£¬s¡Ùt£¬Ê¹µÃµã£¨t£¬as£©¡¢£¨s£¬at£©¶¼ÔÚÖ±Ïßy=kx-1ÉÏ£¬ÊÔÅжÏÊÇ·ñ´æÔÚ×ÔÈ»ÊýM£¬µ±n£¾Mʱ£¬an£¾0ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ó£©Èôa1=f£¨0£©£¬²»µÈʽ
1
an+1
+
1
an+2
+¡­+
1
a2n
£¾
12
35
(1+logf(1)x)
¶Ô²»Ð¡ÓÚ2µÄÕýÕûÊýºã³ÉÁ¢£¬ÇóxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=
3x-1
x+1
£®
£¨1£©ÒÑÖªs=-t+
1
2
£¨t£¾1£©£¬ÇóÖ¤£ºf£¨
t-1
t
£©=
s+1
s
£»
£¨2£©Ö¤Ã÷£º´æÔÚº¯Êýt=¦Õ£¨s£©=as+b£¨s£¾0£©£¬Âú×ãf£¨
s+1
s
£©=
t-1
t
£»
£¨3£©Éèx1=
11
17
£¬xn+1=f£¨xn£©£¬n=1£¬2£¬¡­£®ÎÊ£ºÊýÁÐ{
1
xn-1
}ÊÇ·ñΪµÈ²îÊýÁУ¿ÈôÊÇ£¬Çó³öÊýÁÐ{xn}ÖÐ×î´óÏîµÄÖµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011-2012ѧÄê¹ã¶«Ê¡»ÝÖÝÒ»Öи߶þ£¨ÉÏ£©ÆÚÖÐÊýѧÊÔ¾í£¨ÎÄ¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

É躯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬µ±x£¼0ʱf£¨x£©£¾1£¬ÇÒ¶ÔÈÎÒâµÄʵÊýx£¬y¡ÊR£¬ÓÐf£¨x+y£©=f£¨x£©f£¨y£©£®ÊýÁÐ{an}Âú×ãf£¨an+1£©=£¨n¡ÊN*£©
£¨¢ñ£©Çóf£¨0£©µÄÖµ£¬Åжϲ¢Ö¤Ã÷º¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£©Èç¹û´æÔÚt¡¢s¡ÊN*£¬s¡Ùt£¬Ê¹µÃµã£¨t£¬as£©¡¢£¨s£¬at£©¶¼ÔÚÖ±Ïßy=kx-1ÉÏ£¬ÊÔÅжÏÊÇ·ñ´æÔÚ×ÔÈ»ÊýM£¬µ±n£¾Mʱ£¬a n£¾f£¨0£©ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011-2012ѧÄê¹ã¶«Ê¡»ÝÖÝÒ»Öи߶þ£¨ÉÏ£©ÆÚÖÐÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

É躯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬µ±x£¼0ʱf£¨x£©£¾1£¬ÇÒ¶ÔÈÎÒâµÄʵÊýx£¬y¡ÊR£¬ÓÐf£¨x+y£©=f£¨x£©f£¨y£©£®ÊýÁÐ{an}Âú×㣮
£¨¢ñ£©Çóf£¨0£©µÄÖµ£¬Åжϲ¢Ö¤Ã÷º¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£©Èç¹û´æÔÚt¡¢s¡ÊN*£¬s¡Ùt£¬Ê¹µÃµã£¨t£¬as£©¡¢£¨s£¬at£©¶¼ÔÚÖ±Ïßy=kx-1ÉÏ£¬ÊÔÅжÏÊÇ·ñ´æÔÚ×ÔÈ»ÊýM£¬µ±n£¾Mʱ£¬an£¾0ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ó£©Èôa1=f£¨0£©£¬²»µÈʽ¶Ô²»Ð¡ÓÚ2µÄÕýÕûÊýºã³ÉÁ¢£¬ÇóxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸