精英家教网 > 高中数学 > 题目详情
如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是棱B1C1、B1B的中点,求证:CF⊥平面EAB.
考点:直线与平面垂直的判定
专题:证明题,空间位置关系与距离
分析:欲证CF⊥平面EAB,可证CF⊥BE,CF⊥AB,其中CF⊥BE可由△BB1E≌△BCF得到∠B1BE=∠BCF,从而∠BCF+∠EBC=90°,根据线面垂直的判定定理进行判定即可.
解答: 证明:在正方形B1BCC1中,∵E、F分别为B1C1、B1B的中点,
∴△BB1E≌△BCF,
∴∠B1BE=∠BCF,
∴∠BCF+∠EBC=90°,
∴CF⊥BE
又AB⊥平面B1BCC1,CF?平面B1BCC1
∴AB⊥CF,
又∵AB∩BE=B,
∴CF⊥平面EAB.
点评:本题主要考查了直线与平面垂直的判定,以及平面与平面平行的判定,这种题型是高考的趋势,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=loga(x+3)-1(a>0,a≠1)和f(x)=3x+b的图象过同一定点,则f(log32)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,∠A=2∠B,∠C为钝角,且∠A、B、C所对的边为a,b,c的长度均为整数,则△ABC的周长最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在圆x2+y2-2x=0上求一点P,使P到直线x+y+1=0的距离最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A(-1,0),B(1,0),C(3,2),其外接圆为圆H.对于线段BH上的任意一点P,若在以C为圆心的圆上都存在不同的两点M,N,使得点M是线段PN的中点,则圆C的半径r的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形OABC的边长为2.
(1)在其四边或内部取点P(x,y),且x,y∈Z,求事件:“|OP|>1”的概率;
(2)在其内部取点P(x,y),且x,y∈R,求事件“△POA,△PAB,△PBC,△PCO的面积均大于
2
3
”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,顶点A(1,7),B(3,3),C(7,3),过B作BD⊥AC于D点,求D点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象(如图所示)过点(0,2)、(1.5,2)和点(2,0),且函数图象关于点(2,0)对称;直线x=1和x=3及y=0是它的渐近线.现要求根据给出的函数图象研究函数g(x)=
1
f(x)
的相关性质与图象.
(1)写出函数y=g(x)的定义域、值域及单调递增区间;
(2)作函数y=g(x)的大致图象(要充分反映由图象及条件给出的信息);
(3)试写出y=f(x)的一个解析式,并简述选择这个式子的理由(按给出理由的完整性及表达式的合理、简洁程度分层给分).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
4
sin(
π
4
-x)+
6
4
cos(
π
4
-x).
(1)求f(x)的最小正周期;
(2)若cosθ=
4
5
,θ∈(
2
,2π)
,求f(2θ+
π
3
)的值.

查看答案和解析>>

同步练习册答案