【题目】已知椭圆: 经过点,左右焦点分别为、,圆与直线相交所得弦长为2.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是椭圆上不在轴上的一个动点, 为坐标原点,过点作的平行线交椭圆于、两个不同的点,求的取值范围.
科目:高中数学 来源: 题型:
【题目】【2015高考山东文数】某中学调查了某班全部名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团 | 未参加书法社团 | |
参加演讲社团 | ||
未参加演讲社团 |
(1)从该班随机选名同学,求该同学至少参加上述一个社团的概率;
(2)在既参加书法社团又参加演讲社团的名同学中,有5名男同学名女同学现从这名男同学和名女同学中各随机选人,求被选中且未被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】来自某校一班和二班的共计9名学生志愿服务者被随机平均分配到运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名一班志愿者的概率是.
(Ⅰ)求清扫卫生岗位恰好一班1人、二班2人的概率;
(Ⅱ)设随机变量为在维持秩序岗位服务的一班的志愿者的人数,求分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】质监部门从某超市销售的甲、乙两种食用油中分别各随机抽取100桶检测某项质量指标,由检测结果得到如下的频率分布直方图:
(Ⅰ)写出频率分布直方图(甲)中的值;记甲、乙两种食用油100桶样本的质量指标的方差分别为,,试比较,的大小(只要求写出答案);
(Ⅱ)估计在甲、乙两种食用油中随机抽取1捅,恰有一桶的质量指标大于20;
(Ⅲ)由频率分布直方图可以认为,乙种食用油的质量指标值服从正态分布.其中近似为样本平均数,近似为样本方差,设表示从乙种食用油中随机抽取10桶,其质量指标值位于(14.55,38.45)的桶数,求的数学期望.
注:①同一组数据用该区问的中点值作代表,计算得
②若,则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病倒数计算,下列各选项中,一定符合上述指标的是( )
①平均数 ;
②标准差S≤2;
③平均数 且标准差S≤2;
④平均数 且极差小于或等于2;
⑤众数等于1且极差小于或等于1.
A.①②
B.③④
C.③④⑤
D.④⑤
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:不等式(m-1)x2+(m-1)x+2>0的解集是R,命题q:sin x+cos x>m.如果对于任意的x∈R,命题p是真命题且命题q为假命题,求m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)是奇函数,并且在R上为增函数,若0≤θ≤ 时,f(msinθ)+f(1﹣m)>0恒成立,则实数m的取值范围是( )
A.(0,1)
B.(﹣∞,0)
C.(﹣∞,1)
D.(﹣∞, )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com