【题目】给定函数和,令,对以下三个论断:
(1)若和都是奇函数,则也是奇函数;(2)若和都是非奇非偶函数,则也是非奇非偶函数:(3)和之一与有相同的奇偶性;其中正确论断的个数为( )
A.0个B.1个C.2个D.3个
科目:高中数学 来源: 题型:
【题目】将所有平面向量组成的集合记作,是从到的映射,记作或,其中都是实数.定义映射的模为:在的条件下 的最大值记做.若存在非零向量,及实数使得,则称为的一个特征值.
(1)若求;
(2)如果,计算的特征值,并求相应的;
(3)试找出一个映射,满足以下两个条件:①有唯一特征值,②.(不需证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个函数,如果对任意一个三角形,只要它的三边长、、都在的定义域内,就有、、也是某个三角形的三边长,则称为“双三角形函数”.
(1)判断,,中,哪些是“双三角形函数”,哪些不是,并说明理由;
(2)若是定义在上周期函数,值域为,求证:不是“双三角形函数”;
(3)已知函数,,求证:函数是“双三角形函数”.(可利用公式“”)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某景区提供自行车出租,该景区有辆自行车供游客租赁使用,管理这些自行车的费用是每日元.根据经验,若每辆自行车的日租金不超过元,则自行车可以全部租出;若超出元,则每超过元,租不出的自行车就增加辆.为了便于结算,每辆自行车的日租金(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).
(1)求函数的解析式;
(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:极坐标与参数方程
在平面直角坐标系中,将曲线 (为参数) 上任意一点经过伸缩变换后得到曲线的图形.以坐标原点为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(Ⅰ)求曲线和直线的普通方程;
(Ⅱ)点P为曲线上的任意一点,求点P到直线的距离的最大值及取得最大值时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点为平面上一点,有如下三个结论:
①若,则点为的______;
②若,则点为的______;
③若,则点为的______.
回答以下两个小问:
(1)请你从以下四个选项中分别选出一项,填在相应的横线上.
A. 重心 B. 外心 C. 内心 D. 垂心
(2)请你证明结论②.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com