精英家教网 > 高中数学 > 题目详情

【题目】中,角 的对边分别为 .已知

(1)求角的大小;

2)若 的值

【答案】(1)B.(2)

【解析】试题分析:

(1)边化角,利用两角和差正余弦公式可得,则

(2)利用正弦定理结合同角三角函数基本关系求得,然后结合题意可得.

试题解析:

(1)由已知得2acosBccosBbcosC,由正弦定理得,

2sinAcosBsinCcosBsinBcosCsin(BC),

BCA,所以2sinAcosBsinA,又A(0,),sinA0,所以cosB

B(0,),所以B

(2)由正弦定理得,得sinA

ab,所以A为锐角,则cosA

ABC,得sinCsin(AB) sin(AB)

sinAcosBcosAsinB

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为( )

A. 720 B. 768 C. 810 D. 816

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于公差d>0的等差数列{an}的四个命题:
p1:数列{an}是递增数列;
p2:数列{nan}是递增数列;
p3:数列 是递增数列;
p4:数列{an+3nd}是递增数列;
其中真命题是(
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,q:函数f(x)=(3﹣2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为数列{an}的前n项和,且an>0,an2+an=2Sn
(1)求数列{an}的通项公式;
(2)令bn= ,记Tn=b12b32…b2n12 , 求证:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(
A.已知实数a,b,则“a>b”是“a2>b2”的必要不充分条件
B.“存在x0∈R,使得 ”的否定是“对任意x∈R,均有x2﹣1>0”
C.函数 的零点在区间
D.设m,n是两条直线,α,β是空间中两个平面,若m?α,n?β,m⊥n,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3x2+bx+c,不等式f(x)>0的解集为(﹣∞,﹣2)∪(0,+∞).
(1)求函数f(x)的解析式;
(2)已知函数g(x)=f(x)+mx﹣2在(2,+∞)上单调递增,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上, ,若 =1, =﹣ ,则λ+μ=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 的离心率为 ,焦距为 ,抛物线C2:x2=2py(p>0)的焦点F是椭圆C1的顶点. (Ⅰ)求C1与C2的标准方程;
(Ⅱ)C1上不同于F的两点P,Q满足 ,且直线PQ与C2相切,求△FPQ的面积.

查看答案和解析>>

同步练习册答案