精英家教网 > 高中数学 > 题目详情

【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于95为正品,小于95为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:

测试指标

机床甲

8

12

40

32

8

机床乙

7

18

40

29

6

(1)试分别估计甲机床、乙机床生产的零件为正品的概率;

(2)甲机床生产一件零件,若是正品可盈利160元,次品则亏损20元;乙机床生产一件零件,若是正品可盈利200元,次品则亏损40元,在(1)的前提下,现需生产这种零件2件,以获得利润的期望值为决策依据,应该如何安排生产最佳?

【答案】(1)甲、乙两机床为正品的概率分别为;(2)安排乙机床生产最佳.

【解析】试题分析:(1)由古典概型概率公式可估计甲、乙两机床为正品的概率分别为;(2)随机变量为320元、140元、-40元; 为400元、160元、-80元; 为360元、180元、120元、-60元,分别求出各随机变量发生的概率,再根据期望公式分别求期望值,比较大小即可;

试题解析:(1)因为甲机床为正品的频率为

乙机床为正品的频率约为

所以估计甲、乙两机床为正品的概率分别为

(2)若用甲机床生产这2件零件,设可能获得的利润为320元、140元、-40元,它们的概率分别为

所以获得的利润的期望

若用乙机床生产这2件零件,设可能获得的利润为为400元、160元、-80元,它们的概率分别为

让你以获得的利润的期望

若用甲、乙机床各生产1件零件,设可能获得的利润为360元、180元、120元、-60元,它们的概率分别为

所以获得的利润的期望

所以安排乙机床生产最佳.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(12分)若数列{an}是的递增等差数列,其中的a3=5,且a1,a2,a5成等比数列,

(1)求{an}的通项公式;

(2)设bn= ,求数列{bn}的前项的和Tn

(3)是否存在自然数m,使得 <Tn对一切nN*恒成立?若存在,求出m的值;

若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|﹣|2x﹣a|,a∈R.
(1)当a=3时,解不等式f(x)>0;
(2)当x∈(﹣∞,2)时,f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果一个实数数列{an}满足条件: (d为常数,n∈N*),则称这一数列“伪等差数列”,d称为“伪公差”.给出下列关于某个伪等差数列{an}的结论:①对于任意的首项a1 , 若d<0,则这一数列必为有穷数列;②当d>0,a1>0时,这一数列必为单调递增数列;③这一数列可以是一个周期数列;④若这一数列的首项为1,伪公差为3,- 可以是这一数列中的一项;n∈N*⑤若这一数列的首项为0,第三项为﹣1,则这一数列的伪公差可以是 .其中正确的结论是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}的前n项和Sn满足Sn=2an+n.

(Ⅰ)求证:数列{an﹣1}是等比数列;

(Ⅱ)记bn= ,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆短轴端点和两个焦点的连线构成正方形,且该正方形的内切圆方程为.

(1)求椭圆的方程;

(2)若抛物线的焦点与椭圆的一个焦点重合,直线与抛物线交于两点,且,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1=1,an+1= Sn(n=1,2,3,…).则数列{an}的通项公式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数满足 为数列的前项和,且,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左右焦点分别为 ,离心率为,点在椭圆上, ,过与坐标轴不垂直的直线与椭圆交于 两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)若 的中点为,在线段上是否存在点,使得?若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案