精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,底面是矩形,四条侧棱长均相等且于点.

(Ⅰ)求证:;
(Ⅱ)求证:.

证明过程详见试题解析.

解析试题分析:(Ⅰ)要证明平面,就是要在平面内找一条直线与直线平行,显然符合要求;(Ⅱ)要证明平面,就是要在平面内找两条相交直线与垂直.显然符合要求.
试题解析:(Ⅰ)证明:在矩形中,, 又平面, 平面,所以平面.
(Ⅱ)证明:如图在矩形中,点的中点, 又, 故,.又因为, 平面, 所以平面.
考点:(Ⅰ)线面平行;(Ⅱ)线面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直三棱柱中,,,求:

(1)异面直线所成角的大小;
(2)直线到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,矩形中,,且交于点.

(Ⅰ)求证:
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的正方形, ,且点满足 .

(1)证明:平面 .
(2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱中,分别为的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,点分别是棱的中点.

(1)求证://平面
(2)若平面平面,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,矩形中,,,分别为边上的点,且,,将沿折起至位置(如图2所示),连结,其中.

(Ⅰ)求证:平面
(Ⅱ)在线段上是否存在点使得平面?若存在,求出点的位置;若不存在,请说明理由.
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥P-ABCD中,PA⊥平面ABCD,AD⊥AB,△ABC是正三角形,AC与BD的交点M恰好是AC中点,N为线段PB的中点,G在线段BM上,且

(Ⅰ)求证:AB⊥PD;
(Ⅱ)求证:GN//平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.

(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;
(3)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

同步练习册答案