精英家教网 > 高中数学 > 题目详情
已知直线,给出下列四个命题:
①若②若③若④若
其中正确的命题是(   )
A.①④B.②④C.①③④D.①②④
A

试题分析:①若正确,因为;②若错误。也可能相交;③若错误,可能相交,可能平行,也可能异面;④若正确,因为
点评:本题主要考查了空间的线线,线面,面面垂直的证明,充分考查了学生的逻辑推理能力,空间想象力。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在正方体中,M、N、P分别是的中点,求证:平面MNP//平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图所示,四棱锥中,底面是边长为2的菱形,是棱上的动点.

(Ⅰ)若的中点,求证://平面
(Ⅱ)若,求证:
(III)在(Ⅱ)的条件下,若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,在多面体ABCDEF中,底面ABCD是 平行四边形,AB=2EFEFAB,,HBC的中点.求证:FH∥平面EDB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M为AB的中点。

(Ⅰ)求证:BC1∥平面MA1C;
(Ⅱ)求证:AC1⊥平面A1BC。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ab是两条不重合的直线,是两个不重合的平面,则下列命题中不正确的一个是
A.若B.若,则
C.若D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)在直三棱柱(侧棱垂直底面)中,

(Ⅰ)若异面直线所成的角为,求棱柱的高;
(Ⅱ)设的中点,与平面所成的角为,当棱柱的高变化时,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中点.

(1)求证:平面O1AC平面O1BD
(2)求二面角O1-BC-D的大小;
(3)求点E到平面O1BC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图在三棱锥中,E?F是棱AD上互异的两点,G?H是棱BC上互异的两点,由图可知

①AB与CD互为异面直线;②FH分别与DC?DB互为异面直线;
③EG与FH互为异面直线;④EG与AB互为异面直线.
其中叙述正确的是 (    )
A.①③B.②④C.①②④D.①②③④

查看答案和解析>>

同步练习册答案