精英家教网 > 高中数学 > 题目详情
14.给出以下四个选项,正确的个数是(  )
①函数f(x)=sin2xcosx的图象关于直线x=π对称
②函数y=3•2x+1的图象可以由函数y=2x的图象仅通过平移得到.
③函数y=$\frac{1}{2}$ln$\frac{1-cosx}{1+cosx}$与y=lntan$\frac{x}{2}$是同一函数.
④在△ABC中,若$\frac{\overrightarrow{AB}•\overrightarrow{BC}}{3}$=$\frac{\overrightarrow{BC}•\overrightarrow{CA}}{2}$=$\frac{\overrightarrow{CA}•\overrightarrow{AB}}{1}$,则tanA:tanB:tanC=3:2:1.
A.1个B.2个C.3个D.0个

分析 根据函数图象的对称变换,分析函数f(x)=sin2xcosx的图象关于直线x=π对称后的函数解析式与原函数解析式的关系,可判断①;
根据指数的运算性质及函数图象平移变换法则,可判断②;
分析两个函数的定义域和对应关系是否一致,可判断③;
根据已知结合向量数量积的定义及正弦定理的边角互化,求出tanA:tanB:tanC的值,可判断④

解答 解:①函数f(x)=sin2xcosx的图象关于直线x=π对称变换后的解析式为:f(x)=sin2(2π-x)cos(2π-x)=sin(4π-2x)cos(2π-x)=-sin2xcosx,
x=π不是函数f(x)=sin2xcosx的图象的对称轴,故①错误;
②函数y=3•2x+1=${2}^{x+{log}_{2}3}+1$的图象可以由函数y=2x的图象向左平移log23个单位,再向上平移1个单位得到,故②正确;
③函数y=$\frac{1}{2}$ln$\frac{1-cosx}{1+cosx}$=$\frac{1}{2}$ln$\frac{(1-cosx)(1+cosx)}{{(1+cosx)}^{2}}$=$\frac{1}{2}$ln$\frac{{sin}^{2}x}{{(1+cosx)}^{2}}$=$\frac{1}{2}$ln${tan}^{2}\frac{x}{2}$=lntan$\frac{x}{2}$,
但函数y=$\frac{1}{2}$ln$\frac{1-cosx}{1+cosx}$的定义域与函数y=lntan$\frac{x}{2}$的定义域不同,
故两个函数不是同一函数,故③错误;
④在△ABC中,若$\frac{\overrightarrow{AB}•\overrightarrow{BC}}{3}$=$\frac{\overrightarrow{BC}•\overrightarrow{CA}}{2}$=$\frac{\overrightarrow{CA}•\overrightarrow{AB}}{1}$,
则$\frac{accosB}{3}=\frac{abcosC}{2}=bccosA$,
则$\frac{sinAsicCcosB}{3}=\frac{sinAsinBcosC}{2}=sinBsinCcosA$,
则2tanC=3tanB且tanA=2tanC,
则tanA:tanB:tanC=6:2:3,故④错误.
故正确的命题的个数是1个,
故选:A

点评 本题考查的知识点是命题的真假判断与应用,此类题型往往综合较多的其它知识点,综合性强,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是$\frac{a}{b}$=-3
C.命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命题“若x=y,则sinx=siny”的逆否命题为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)的二次项系数为a,且不等式f(x)+2x>0的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等实数根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求实数a的取值范围;
(3)若f(x)≥0对任意x∈[2,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题P:函数y=loga(2x+1)在定义域上单调递增;命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,若P、Q都是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列命题:①存在实数α,使sinαcosα=1,②函数y=sin($\frac{3π}{2}$+x)是偶函数;③直线x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5π}{4}$)的一条对称轴;④若α、β是第一象限的角,且α>β,则sinα>sinβ.
其中正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,且Sn=2an-1,(n∈N*
(1)求a1及an
(2)若bn=$\frac{1}{lo{g}_{2}{a}_{n+1}•lo{g}_{2}{a}_{n+2}}$,数列{bn}的前n项和为Tn,求使Tn≥$\frac{m}{4029}$对所有的n∈N*都成立的m的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,正方形ABCD中,点P是射线BC上的任意一点(点B与点C除外),连接DP,分别过点C,A作直线DP的垂线,垂足为点E,F.
(1)当点P在BC的延长线上时,那么线段AF、CE、EF之间有怎样的数量关系?请证明你的结论;
(2)当点P在边BC上时,联结AP,正方形的边长为2,设CE=x,AF=y.求y与x的函数解析式.并写出函数的定义域;
(3)在(2)的条件下,当x=1时.求EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.空间四边形P-ABC中,PA=PB=PC=AB=BC=CA.
(1)写出图中几组异面直线;
(2)画出与AB,PC都垂直且相交的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\frac{2si{n}^{2}x+sin2x}{1+tanx}=\frac{1}{2}$($\frac{π}{4}<x<\frac{π}{2}$),则sinx-cosx=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案