精英家教网 > 高中数学 > 题目详情

已知(1+x)n(n∈N*)的展开式中,x2与x3的系数相等,则n=________.

5
分析:利用二项展开式的通项公式求出展开式的通项,求出x2与x3的系数,列出方程求出n.
解答:展开式的通项为Tr+1=Cnrxr
所以展开式x2的系数为Cn2;x3的系数为Cn3
∴Cn2=Cn3
∴2+3=n即n=5
故答案为5
点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f'(x)是f(x)的导数,记f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),给出下列四个结论:
①若f(x)=xn,则f(5)(1)=120;
②若f(x)=cosx,则f(4)(x)=f(x);
③若f(x)=ex,则f(n)(x)=f(x)(n∈N+);
④设f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定义域上的可导函数,h(x)=f(x)•g(x),则h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
则结论正确的是
①②③
①②③
(多填、少填、错填均得零分).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•莆田模拟)已知(1+x)n(n∈N*)的展开式中,x2与x3的系数相等,则n=
5
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f'(x)是f(x)的导数,记f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),给出下列四个结论:
①若f(x)=xn,则f(5)(1)=120;
②若f(x)=cosx,则f(4)(x)=f(x);
③若f(x)=ex,则f(n)(x)=f(x)(n∈N+);
④设f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定义域上的可导函数,h(x)=f(x)•g(x),则h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
则结论正确的是______(多填、少填、错填均得零分).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省达州市高二(下)期末数学试卷(文科)(解析版) 题型:填空题

已知f'(x)是f(x)的导数,记f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),给出下列四个结论:
①若f(x)=xn,则f(5)(1)=120;
②若f(x)=cosx,则f(4)(x)=f(x);
③若f(x)=ex,则f(n)(x)=f(x)(n∈N+);
④设f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定义域上的可导函数,h(x)=f(x)•g(x),则h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
则结论正确的是    (多填、少填、错填均得零分).

查看答案和解析>>

科目:高中数学 来源:2011年福建省莆田市高三质量检查数学试卷(理科)(解析版) 题型:解答题

已知(1+x)n(n∈N*)的展开式中,x2与x3的系数相等,则n=   

查看答案和解析>>

同步练习册答案