精英家教网 > 高中数学 > 题目详情
(2013•临沂二模)设第一象限内的点(x,y)满足
2x-y-4≤0
x-y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值是4,则
1
a
+
1
b
的最小值为(  )
分析:由线性约束条件求出最优解,代入线性目标函数得到a+b=1,然后利用
1
a
+
1
b
等于(
1
a
+
1
b
)(a+b)
展开整理,最后利用基本不等式求最小值.
解答:解:因为点(x,y)是第一象限内的点,结合约束条件
2x-y-4≤0
x-y≥0
得可行域如图,
所以最优解为A(4,4),即4a+4b=4,所以a+b=1.
1
a
+
1
b
=(a+b)(
1
a
+
1
b
)=
a
b
+
b
a
+2

≥2
a
b
b
a
+2=4

当且仅当
a
b
=
b
a
,即a=b是取“=”.
所以
1
a
+
1
b
的最小值为4.
故选B.
点评:本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂二模)已知函数f(x)=elnx,g(x)=lnx-x-1,h(x)=
1
2
x2

(Ⅰ)求函数g(x)的极大值.
(Ⅱ)求证:存在x0∈(1,+∞),使g(x0)=g(
1
2
)

(Ⅲ)对于函数f(x)与h(x)定义域内的任意实数x,若存在常数k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的分界线.试探究函数f(x)与h(x)是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)函数y=esinx(-π≤x≤π)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)已知定义在R上的函数y=f(x)对任意的x都满足f(x+1)=-f(x),当-1≤x<1时,f(x)=x3,若函数g(x)=f(x)-loga|x|至少6个零点,则a取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)已知x∈R,ω>0,
u
=(1,sin(ωx+
π
2
)),
v
=(cos2ωx,
3
sinωx)函数f(x)=
u
v
-
1
2
的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是(  )

查看答案和解析>>

同步练习册答案