分析 (1)求出导函数f'(x)=lnx+1,对x分别讨论,得出导函数的正负区间,根据函数单调性分别讨论t的范围,求出函数的最小值;
(2)不等式整理为a≤x+$\frac{3}{x}$+2lnx恒成立,只需求出右式的最小值即可,构造函数h(x)=x+2lnx+$\frac{3}{x}$,
利用求导的方法得出函数的最小值;
(3)根据不等式的形式可得f(x)>$\frac{x}{{e}^{x}}$-$\frac{2}{e}$,只需使f(x)的最小值大于右式的最大值即可,构造函数m(x)=$\frac{x}{{e}^{x}}$-$\frac{2}{e}$,利用求导得出函数的最大值.
解答 解:(1)f(x)=xlnx,
∴f'(x)=lnx+1
当x∈(0,$\frac{1}{e}$),f′(x)<0,f(x)单调递减,
当x∈( $\frac{1}{e}$,+∞),f′(x)>0,f(x)单调递增
①0<t<$\frac{1}{e}$时,f(x)min=f( $\frac{1}{e}$)=-$\frac{1}{e}$;
②$\frac{1}{e}$≤t时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt;
∴f(x)min=$\left\{\begin{array}{l}{-\frac{1}{e}}&{,0<t<\frac{1}{e}}\\{tlnt}&{,t≥\frac{1}{e}}\end{array}\right.$,
(2)2f(x)≥g(x)恒成立,
∴a≤x+$\frac{3}{x}$+2lnx恒成立,
令h(x)=x+2lnx+$\frac{3}{x}$,
则h'(x)=1+$\frac{2}{x}$-$\frac{3}{{x}^{2}}$=$\frac{(x+3)(x-1)}{{x}^{2}}$,
由h'(x)=0,得x1=-3,x2=1,
x∈(0,1)时,h'(x)<0;
x∈(1,+∞)时,h'(x)>0.
∴x=1时,h(x)min=1+0+3=4.
∴a≤4.
∴实数a的取值范围是(-∞,4].
(3)对一切x∈(0,+∞),都有lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$成立,
∴xlnx>$\frac{x}{{e}^{x}}$-$\frac{2}{e}$,
∴f(x)>$\frac{x}{{e}^{x}}$-$\frac{2}{e}$,
由(1)可知f(x)=xlnx(x∈(0,+∞))的最小值是-$\frac{1}{e}$,当且仅当x=$\frac{1}{e}$时取到.
设m(x)=$\frac{x}{{e}^{x}}$-$\frac{2}{e}$,(x∈(0,+∞)),则m′(x)=$\frac{1-x}{{e}^{x}}$,
∵x∈(0,1)时,m′(x)>0,
x∈(1,+∞)时,m′(x)<0,
∴m(x)max=m(1)=-$\frac{1}{e}$,
从而对一切x∈(0,+∞),lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$成立.
点评 考查了利用导函数判断函数的单调性,利用导数求函数的最值,根据单调性对参数的分类讨论求函数的最值.分类讨论思想的应用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{7}$ | B. | -$\frac{3}{7}$ | C. | -$\frac{7}{3}$ | D. | $\frac{7}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com