精英家教网 > 高中数学 > 题目详情

【题目】已知在直角坐标系中,曲线的C参数方程为 (φ为参数),现以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)在曲线C上是否存在一点P,使点P到直线l的距离最小?若存在,求出距离的最小值及点P的直角坐标;若不存在,请说明理由.

【答案】
(1)解:曲线的C参数方程为 (φ为参数),普通方程为(x﹣1)2+(y﹣1)2=4,

直线l的极坐标方程为ρ= ,直角坐标方程为x﹣y﹣4=0


(2)解:点P到直线l的距离d= =

∴φ﹣ =2kπ﹣ ,即φ=2kπ﹣ (k∈Z),距离的最小值为 ,点P的直角坐标(1+ ,1﹣


【解析】(1)利用坐标的互化方法,求曲线C的普通方程和直线l的直角坐标方程;(2)点P到直线l的距离d= = ,即可求出距离的最小值及点P的直角坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线C: (θ为参数),直线l1:kx﹣y+k=0,l2:cosθ﹣2sinθ=
(Ⅰ)写出曲线C和直线l2的普通方程;
(Ⅱ)l1与C交于不同两点M,N,MN的中点为P,l1与l2的交点为Q,l1恒过点A,求|AP||AQ|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 + =1(a>b>0)的上顶点为A,左右顶点为B,C,右焦点为F,|AF|=3,且△ABC的周长为14.
(1)求椭圆的离心率;
(2)过点M(4,0)的直线l与椭圆相交于不同两点P,Q,点N在线段PQ上,设λ= = ,试判断点N是否在一条定直线上,并求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若 ,求函数 处的切线方程
(2)设函数 ,求 的单调区间.
(3)若存在 ,使得 成立,求 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且
(1)求sinB的值;
(2)若a=4,求△ABC的面积S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求证:平面PBD⊥平面PAC;
(2)求二面角D﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=4x,焦点为F,过点P(﹣1,0)作斜率为k(k>0)的直线l与抛物线C交于A,B两点,直线AF,BF分别交抛物线C于M,N两点,若 + =18,则k=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ
(1)求圆C的直角坐标方程;
(2)若点P(1,2),设圆C与直线l交于点A、B,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆 (0<b<2)的焦点.
(1)求椭圆E的标准方程;
(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(﹣1,0),N(1,0),记直线TM,TN的斜率分别为k1 , k2 , 当2m2﹣2k2=1时,求k1k2的值.

查看答案和解析>>

同步练习册答案