精英家教网 > 高中数学 > 题目详情

【题目】如图,已知抛物线,设直线经过点且与抛物线相交于两点,抛物线两点处的切线相交于点,直线分别与轴交于两点.

1)求点的轨迹方程

2)当点不在轴上时,记的面积为的面积为,求的最小值.

【答案】124

【解析】

1)首先设出,利用导数的几何意义求出切线的方程,联立得到交点的坐标.再设出直线的方程为,代入抛物线,利用根系关系即可得到点的轨迹方程.

(2)首先根据切线的方程得到,从而得到.利用弦长公式和点到直线的距离公式得到,从而得到.,得到,再利用基本不等式即可得到的最值.

1)因为抛物线,所以.

.

则切线的方程分别为.

联立解得交点的坐标为:.

设直线的方程为,代入

整理得:

所以,且.

所以,于是

故点的轨迹方程为.

2)因为切线的方程为

得到,同理:.

所以.

,故.

由(1)可知

又点到直线的距离为

所以.

所以.

,则.

①当时,,当且仅当时取“.

所以

②当时,

当且仅当时取“.

所以

综上所述:的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

1)求处的切线的一般式方程;

2)请判断的图像有几个交点?

3)设为函数的极值点,的图像一个交点的横坐标,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图例,以下四个选项错误的是(

A.54周岁以上参保人数最少B.1829周岁人群参保总费用最少

C.丁险种更受参保人青睐D.30周岁以上的人群约占参保人群的80%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了积极稳妥疫情期间的复学工作,市教育局抽调5名机关工作人员去某街道3所不同的学校开展驻点服务,每个学校至少去1人,若甲、乙两人不能去同一所学校,则不同的分配方法种数为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人玩掷正方体骰子走跳棋的游戏,已知骰子每面朝上的概率都是,棋盘上标有第0站,第1站,第2站,……,第100.一枚棋子开始在第0站,选手每掷一次骰子,棋子向前跳动一次,若掷出朝上的点数为12,棋子向前跳两站;若掷出其余点数,则棋子向前跳一站,直到跳到第99站或第100站时,游戏结束;设游戏过程中棋子出现在第站的概率为.

1)当游戏开始时,若抛掷均匀骰子3次后,求棋子所走站数之和X的分布列与数学期望;

2)证明:

3)若最终棋子落在第99站,则记选手落败,若最终棋子落在第100站,则记选手获胜,请分析这个游戏是否公平.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,直线的极坐标方程为,曲线的参数方程为为参数).

(Ⅰ)求直线的直角坐标方程和曲线的普通方程;

(Ⅱ)求曲线上的动点到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

(Ⅰ)若为单调递增函数,求实数的取值范围;

(Ⅱ)当存在极小值时,设极小值点为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数满足,若的最大值为,最小值为,则实数的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知线段是过抛物线的焦点F的一条弦,过点AA在第一象限内)作直线垂直于抛物线的准线,垂足为C,直线与抛物线相切于点A,交x轴于点T,给出下列命题:

(1)

(2)

(3).

其中正确的命题个数为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案