精英家教网 > 高中数学 > 题目详情

在三棱锥中,两两垂直,且,点是棱的中点.
(1)求异面直线所成角的余弦值;
(2)求二面角的余弦值.

(1)以O为原点OB,OC,OA所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则O(0,0,0),           1分
        2分    设异面直线BE与AC所成角为
     4分
(2)易知平面BEC的一个法向量为    5分
不妨设为平面ABE的一个法向量又

                                                  …………7分
                                …………9分
因为二面角A-BE-C为钝二面角,所以二面角A-BE-C的余弦值-   

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

本小题满分12分)

已知三棱锥P­ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,
N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(I)证明:CM⊥SN;(II)求SN与平面CMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.

(1)求证:BD⊥平面AED;(4分)
(2)求二面角F-BD-C的余弦值.(8分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求证:AD⊥平面SBC;
(II)试在SB上找一点E,使得BC//平面ADE,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中点,N是BC1的中点.

(1)求证:MN//平面A1B1C1
(2)求二面角B-C1M-C的平面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD, E、F分别是PC、PD的中点,求证:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(本小题满分13分)如图,平面⊥平面,,,

直线与直线所成的角为,又。     
(1)求证:
(2)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知向量,则以为邻边的平行四边形的面积为(  )

A.B.C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图:是⊙的直径,垂直于⊙所在的平面,是圆周上不同于的任意一点,
(1)求证:平面.
(2)图中有几个直角三角形.

查看答案和解析>>

同步练习册答案