精英家教网 > 高中数学 > 题目详情
7.设A为圆x2+y2-4x-4y+7=0上一动点,则A到直线x-y-5=0的最大距离为$\frac{{5\sqrt{2}}}{2}+1$.

分析 圆x2+y2-4x-4y+7=0配方为:(x-2)2+(y-2)2=1,可得圆心C(2,2),半径r=1.求出圆心C到直线的距离d.可得A到直线x-y-5=0的最大距离=d+r.

解答 解:圆x2+y2-4x-4y+7=0配方为:(x-2)2+(y-2)2=1,可得圆心C(2,2),半径r=1.
圆心C到直线的距离d=$\frac{|2-2-5|}{\sqrt{2}}$=$\frac{5\sqrt{2}}{2}$.
则A到直线x-y-5=0的最大距离=d+r=$\frac{{5\sqrt{2}}}{2}+1$.
故答案为:$\frac{{5\sqrt{2}}}{2}+1$.

点评 本题考查了直线与圆的方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.(1)计算 $\frac{\sqrt{3}sin(-\frac{20}{3}π)}{tan\frac{11}{3}π}$-cos$\frac{13}{4}$π•tan(-$\frac{37}{4}$π).
(2)已知tan α=$\frac{4}{3}$,求下列各式的值:①$\frac{sin2α+2sinαcosα}{2cos2α-sin2α}$;②sin αcos α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知sinα+cosα=$\frac{1}{5}$   且 0<α<π求:
(1)sinαcosα;
(2)tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果函数y=3cos(2x+φ)的图象关于点$({\frac{4π}{3},0})$,则|φ|的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果曲线y=f(x)在点(2,3)处的切线过点(-1,2),则有(  )
A.f′(2)<0B.f′(2)=0C.f′(2)>0D.f′(2)不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知0<a<2,证明:$\frac{1}{a}$+$\frac{4}{2-a}$≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知过原点O的圆x2+y2-2ax=0又过点(4,2),(1)求圆的方程,(2)A为圆上动点,求弦OA中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A∈α,P∉α,$\overrightarrow{PA}$=(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,x)其中x>0,且|$\overrightarrow{PA|}$|=$\sqrt{3}$,平面α的一个法向量$\overrightarrow n=(0,-\frac{1}{2},-\sqrt{2})$.
(1)求x的值;
(2)求直线PA与平面α所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(2sinx,cosx),$\overrightarrow{b}$=(cosx,2$\sqrt{3}$cosx),函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$
(Ι)求函数f(x)的最小正周期;
(ΙΙ) 当$x∈[0,\frac{π}{2}]$时,求函数f(x)的最大值与最小值.

查看答案和解析>>

同步练习册答案